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Abstract

VHDL models are executed sequentially in current commercial simulators. As chip

designs grow larger and more complex, simulations must run faster. One approach to

increasing simulation speed is through parallel processors. This research transforms the

behavioral and structural models created by Intermetrics' sequential VHDL simulator into

models for parallel execution. The models are simulated on an Intel iPSC/2 hypercube with

synchronization of the nodes being achieved by utilizing the Chandy-Misra paradigm for

discrete-event simulations. Three eight-bit adders, the ripple-carry, the carry-save, and the

carry-lookahead, are each run through the parallel simulator. Simulation time is cut in at

least half for all three test cases over the sequential Intermetrics model. Results with regard

to speedup are given to show effects of different mappings, varying workloads per node, and

overhead due to output messages.
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I. Itroduction

.1.1 Overview

Very Large Scale integration (VLSI) electronic chip designs have grown to the point

where designers can neither afford the time nor the money to bread board v-.ry comple':

designs. Since designers cannot test hardware prototypes, they must be satisfied Nith testing

a simulation of their designs. However, because they are working with a simulation, tests

can be quickly reconfigured, another simulation run, and the circuit redesigned before

manufacturing aay expensive hardware (Vyas:402). Thus, the simplicity and effectiveness

of documenting and testing chip designs, by taking advantage of the VHSIC (Very High

Speed Integrated Circuit) Hardware Description Language (' THDL), result in a better design

for the chip.

Nevertheless, chip designs are now so complex that sequential VHDL simulators offer

only limited capability as a useful tool. One approach to handling the complexity of a design

is to distribute the simulation of the design over several processors. By mapping VHDL's

capabilities to a parallel processor, the chip designer can still receive results from simulations

in a reasonable amount of time, ever for complex circuits. Currently, such a capability does

not exist.

1.2 Background

The Department of Defense (DOD) has iderntified VHDL as the standard language

for all designs of Application Specific Integated Circuitz (ASICs) (MILS:64-4). Using

VHDL, the DOD speLifies the desired functional behavior of a desired chip, with respect
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to :ime (i.e., a "black box"). Competing conractors are then able to provide VHDL

structural designs that accomplish the desired behavior. It is the structural design which

specifies the actual hardware components that perform the function described by ihe

behavioral model. Additionally, since well-written V-.D. : e is readable by both machines

and humans, it is self-documenting (VLRM:i) (L.'. i).

As a simple example, suppose the DOD specifiL a requirement for a chip that takes

a 32-bit integer as its input, and after a delay of fi, . r"nose.,onds (ns), produces the

number's square-root. Contractors who possess the nec -ssary skill and technology describe

the chip's subcomponents in VFIDL and run sinalations. Once they verify that the VHDL

design meets the specified requirements, they submit the VHDL code as their structural

design. DOD tests the VHDL designs from each contractor to confirm they meet the

minimum requirements and to verify thL results. Based on the outcome of thosv. tests, DOD

chooses a chip design and awards the contract.

Since government contractors usc. VHDL as a common platfo,,m, DOD can directly

compare different designs to each other and select the best design. Furthermore, since

VHDL is standardized, designs for interacting components are thus compatible with eacl.

other, despite the company that originally created them. This co.mpatibility allovs designs

to be scaled up or scaled down. The resultant langaage is of great benefit in the phases of

desin research, testing, and design maintenance (Lips:xii).

1.3 Sequential Simulation Problem

As the size and complexity of VLS.,I circuit designs have grown, simulations of the

1-2



designs have become increasingly complex, requiring faster processing. One approach to

gaining the necessary computing power is to use parallel processors. Mapping VHDL

simulations to a parallel processor offers speedup for even more complex circuit .'esigns than

thos, that are currently simuLted sequentiall. Therefore, the goal of this thesL is to

develop and test a VHDL compiler design that enables sequential VHDL models t( be

mapped to and run .'n a parallel processor.

1.4 Assumptions/Limitations

Before tackling the sequential simulation problem, the enviionment in which pa-allel

simulations are to evolve must be defined. Therefore, below are assumptions about that

environment and the constraints that it imposes:

1) This thesis uses the terms "parallel" and "distributed" interchangeably throughout.

Usually a "distributed processor" implies a mul*;computer that is made up of processo;S that

are not geographically close to each other (Akl:18). A "parallel computer" is a coi.puter

with multiple processors that work simultaneously on subproblems of a large problem. One

can solve the original, large problem by combining the results from each subproblem (Akl:2).

Since the definition 3f "close" varies from author to author, "parallel" and "distributed" are

used interchangeably.

2) The distributed processor used for development and research is the Intel iPSC/2

Hypercube with Release 3.2 as the system software.

3) Source code is written in the standard C programming language (non-ANSI) and

is compiled using the Green Hills C compiler.
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4) To further research efforts for both DARPA and AFIT and stay consistent with

the AFIT environment, a variation of the Chandy-Misra scheduling algorithm for event-

driven simulations is used.

5) The output from the analyze, model generate, and build phases of the Intermetrics

VHDL compiler are correct and accessible.

6) The VHDL test cases are within the VHDL subset that is used to demonstrate

parallelized VHDL.

1.5 Research Objectives

The main objective is to parallelize st indard VHDL behavioral and structural

simulations. So that others may use the same process to design even more complex VHDL

parallel simulations requires clear documentation. Additionally, the three test cases provide

a common set of VHDL simulations for future students to use as a baseline in their parallel

pyocessing -esearch.

1.6 Approach

The first step is to understand how the sequential VHDL simulator works. It

analyzes VHDL code, processes it into an intermediate format code, then transforms the

interme,'iate code into C source code. A sequential computer then compiles and executes

the C s34rce code.

To simulate VHDL in parallel, commands for the parallel proces., or must be inserted

into the code at some point in the process. C source code is much more readable and easier
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to work with than the intermediate format. Therefore, our approach is to intercept, analyze,

and transform the C source code for parallel execution.

There are two ways to transform the code. The first is alter the C source code as it

is generated, by changing the Ada and C files that make up the sequential VHDL system.

The second approach is to run a set of VHDL code through the system and analyze the

generated C source code files.

To ensure progress, the problem has been attacked from both directions. Using only

the first method, a particular statement might have been overlooked while sifting through

the 14 Mbytes of lines of code. However, depending only on the second method might have

limited the subset of VHDL too much, thus, rendering the compiler less useful for later

students. Combining the two approaches results in a much more universal subset of VHDL

with which to work. It also provides a better understanding of the overall VHDL process.

After choosing an adequate subset of VHDL, a compiler that translates sequential

C source code to parallel C source code is needed. Testing the transformed code requires

the development and implementation of a parallel VHDL simulator. The simulator takes

the transformed VHDL descriptions as input, runs the VHDL simulation in parallel, and

produces output statements that correspond to signal changes.

After designing the compiler, three test cases have been run through it to insure the

functionality of the compiler. These test cases are the structural architectures for a ripple-

carry adder, a carry-lookahead adder, and a carry-save adder. The successful runs of these

tests prove that parallelizing at least a subset of VHDL is possible. Final analysis of the

tests includes lessons learned, suggestions for improvements, and recommendations for
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further studies.

1.7 Summary

Because VLSI chip designs are becoming more complex, it is unrealistic for designers

to build and test a prototype of a microelectronic circuit. Therefore, today's chip designers

use VHDL to submit chip designs to the DOD. These designers are discovering that

sequential execution limits the speed at which a VHDL simulation can be run. By

distributing VHDL throughout a parallel processor, designers complete a simulation run

more quickly.

If each individual simulation is faster, designers are able to perform more tests on

different configurations of the circuit. These easily reconfiguretC circuits and tests result in

a more robust chip design. Iricreasing the reliability of each chip increases the reliability and

accuracy of the weapon systems which use these chips. More reliable weapon systems

increase the ability to deliver the payload to the intended target and avoid collateral damage.

1.8 Organization of Thesis

Chapter two contains background material on parallel simulation and VHDL. The

parallel simulation discussion includes a comparison of different types of discrete-event

paradigms such as Chandy-Misra and Time Warp. The VHDL section gives a brief review

of VHDL and points out the benefits of VHDL simulations.

In the third chapter, the reader is introduced to the process of designing the parallel

VHDL simulator. First, the Intermetrics sequential simulator is analyzed and modeled.
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Then, design of the parallel simulator begins. Finally, concerns inherent in parallel VHDL

simulation are addressed.

Chapter four covers implementation of the parallel simulator. Specifically, it provides

direction to repeat this work with other VHDL models. Several examples are shown to help

the reader understand parallel simulation concepts.

In Chapter five, the reader can find three test cases. These test cases give the user

a hands-on insight into the problems of parallel simulation. Also in chapter five is a

discussion about output verification.

Lastly, Chapter six presents findings from running three test cases through the parallel

simulator. Results from various experiments are compared and explanations submitted for

possible causes of any interesting phenomena. It also offers some conclusions for this

research and recommends pote itial areas for future work.
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11. Background

To develop parallel simulations for VHDL, requires familiarity in two distinct areas.

The first is simulations in general. One must understand simulation approaches to choose

which would be best for modeling the behavior of an electronic circuit. The second area is

VHDL itself. One cannot parallelize VHDL without comprehending the interdependencies

of sequential VHDL's separate stages.

2.1 Parallel Simulations

2.1.1 Conservative Appioach To help parallelize VHDL simulations, Chandy and

Misra suggest looking at the simulations as a series of discrete events. Ever, discrete event

must have a simulation time-stamp attached. The user assigns electronic components, called

logical processes (LPs), to one of several processors. Each processor must be aware of

which LPs are assigned to which processors and the dependencies between LPs. After an

LP finishes processing new input., it sends a message to all downstream LPs. The message

contains its updated output ,alue and the simulation time at which the update occurred

(Chan:199). Since all of the LP's can be working simultaneously on several processors, the

VHDL simulation has been parallelized over the sequential implementation and a

corresponding speedup is expected.

One drawback to this approach is that deadlocks can occur. Figures 2.1 and 2.2 each

dep.ct a possible scenario for deadlock in a simulation. One case of deadlock occurs when

a processor is waiting for an input from an upstream processor that never arrives, as shown

in Figure 2.1. "NE Time" is the simulation time for the next event in that LP. The time
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shown next to the arrow between LPs is the simulation time of the last message sent along

that path.

NE Time 5 ns

lO1s0 ns

NE Time = Done

Figure 2.1 An Occurrence of Deadlock.

Suppose LPO never sends a message to LP1. Then LP1 waits at simulation time 0

ns even after LP0 and LP2 are completely done with the simulation. Since LP3 must wait

for a message from LP1 before proceeding, LP1 effectively blocks LP3 and any downstream

processes that are waiting for a message from LP3. Thus, since there is nothing in the

system that will clear the blocked LPs, there is a deadlock.

Another example of deadlock can occur when there is feedback among the LPs, as

shown in Figure 2.2. Chandy and Misra call this type of deadlock "cyclic waiting" since the

cycle must be broken before the processes can continue (Misr:55). In Figure 2.2, LP0 has
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received a message from an upstream LP (not shown) at simulation time 10 ns. Also LPO

has never received a message from LP2. Therefore, the simulation time along that arc is

still at 0 ns.

LP0 cannot proceed until it receives a time from LP2 of at least 10 ns. LP2 is waiting

for LP1 to send a message for time 100 ns or greater. But LP1 is waiting for LPO. Since

er ch LP is waiting for another, deadlock occurs again.

NE Time - 1Ons NE Time - lOns NE Time -lOOns

ion On s OfS' O n3/'" Ons

MMILPO io p - 'P1MLP2- -*

0Ons

Figure 2.2 Another Occurrence of Deadlock.

Although Chandy and Misra admit deadlock is a problem, they submit that deadlock

will happen very infrequently and, therefore, is only a minoi concern (Chan:203-204). One

proposed solution for deadlock is for the controlling processor to poll all of the other

processors until it finds out what the next simulation time should be. Each processor

responds with its earliest next event time. The controller analyzes all of the responses from

processors. It chooses the lowest time, called a "safe" time, and broadcasts this simulation
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time to each processor. Each processor updates their simulation clock to this time allowing

at least one of them to restart. Restarting one processor breaks the deadlock, and the

simulation can continue (Chan:204).

For example, in Figure 2.1, the controller finds the lowest next event time to be 5 ns.

It broadcasts this time to all LPs. That broadcast effectively updates every input arc time

to 5 ns if the current value on that arc is less than 5 ns.

In Figure 2.2, the controller breaks the deadlock by broadcasting 10 ns, which enables

LPO and LPJ to continue. Obviously, the controller must intervene constantly to recover

from frequent deadlocks. Therefore, Chandy and Misra suggest an alternative.

That alternative is to use "NULL messages" to update the simulation time of every

dependent LP. Although these messages provide no data information for the simulation,

they do ensure progress for all downstream LPs. A NULL message is sent in two cases: 1)

when an LP sends out a message on one output arc, it must send out a NULL message on

every other output arc for that same time; and 2) when an LP receives an updated time

from an upstream LP, it adds its propagation delay to this new time and sends the modified

time out to all of its downstream LPs.

For example, consider the problem in Figure 2.1 once more. If LPO sends a message

to LP1 every time it sends a message to LP2, then LP1 is able to proceed. Since LP1 is

processing, LP3 is able to proceed as well.

In Figure 2.2, assume the delay through each LP (which is known beforehand) is 5

ns. LPO sends a NULL message for time 5 ns (0 ns + 5 ns) to LP1. After receiving the

NULL message, LP1 sends a NULL message for time 10 ns (5 ns + 5 ns delay) to LP2.
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LP2 then sends a NULL message for time 15 ns (10 ns + 5 ns delay) to both of its

downstream processes, including LPO. LPO now has 10 ns and 15 ns on its input arcs,

allowing it to process its next event. Thus, this alternative avoids deadlock.

Chandy and Misra believe such deadlock predicaments are rare occurrences. They

submit that the overhead of a central controller or of sending and receiving NULL messages

is worth the assurance of deadlock recovery or avoidance. These approaches prevent a

logical process from proceeding until it is guaranteed not to receive a message for a past

simulation time. Thus, it is called the "conservative" approach.

2.1.2 Asynchronous Distributed Approach The asynchronous distributed approach

differs from Chandy and Misra's proposal in that it prevents the possibility of deadlock. By

preventing deadlock, recovery from deadlock is never an issue. This approach allows more

processing time to be focused on the simulation itself.

Ghosh and Yu propose that deadlock can be prevented. Every component (LP)

sends out a message with the time-stamp of the lowest of its input times plus the

propagation delay through the component. Every LP that is waiting for a signal from the

component receives this time-stamped message (Ghos:76). If the value of the output does

not change, the message may be considered a "null message."

If every LP broadcasts null messages, there is no possibility of deadlock (Ghos:77).

However, Ghosh and Yu admit that when simulating circuits with feedback loops, LPs might

spend a large amount of time processing null messages. Unfortunately, most of these null

messages will not advance the simulation at all. Wasting time processing useless null
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messages is the price that one must pay to insure that the system remains deadlock-free.

2.1.3 Time Waip Jefferson introduced another simulation paradigm, called Time

Warp. Jefferson criticized the Chandy-Misra paradigm because the downstream processors

in a pipeline parallel execution may sit idle while the upstream processors are busily

computing. A "blocked" logical process is one that sits idle, waiting until it can safely

continue processing. "Blocked" is also used to describe the processor's state when the

processor only contains idle logical processes.

Instead of blocking a process, Jefferson proposes to let each logical process proceed

at its own pace based on present information. If a message comes in with a time stamp in

the past, then the logical process must roll back to that simulation time to process the

message (Jeff:411).

A further complication of rolling back a process is the fact that it may have sent out

messages to other processes that now contain incorrect data. The downstream processes

may have used the incorrect data to send out their own messages, and so on. Jefferson

acknowledges that any message sent out in error must now be cancelled. An "antimessage"

is the mechanism he uses to cancel an errant message (Jeff:414).

Since a logical process may have to rollback to some previous point in the simulation,

every state the process has been in must be saved. For hundreds or thousands of logical

processes, such memory overhead is unacceptable. Therefore, Jefferson introduces a "global

virtual time" (GVT) which guarantees the state of all processes are correct at that time.

After saving the state of every logical process for the GVT, all previous state information
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can be discarded, thus freeing valuable memory (Jeff:417-419). Thus, one trades the

overhead of blocking or deadlock recovery/prevention for the overhead of saving states,

calculating GVTs, and rolling back.

2.1.4 Lookahead Fujimoto proposes using "lookahead" to calculate likely, future

simulation outputs without actually implementing the event. This approach combines both

Jefferson's Time Warp algorithm and the Chandy-Misra paradigm because a processor

spends its idle time calculating probable future events (outputs). However, the processor

does not apply those outputs until the event time matches the simulation clock. Since the

processor does not send any messages until the simulation time is safe, processors never

have to be rolled back.

Although the lookahead approach is attractive, Fujimoto believes that one LP's

dependence on another inherently limits some parallel applications as to how they can be

parallelized. He formally defines the limiting factor as "lookahead" and claims it plays a

critical role in simulator performance (Fuji:36). Lookahead is the ability of a logical process

to schedule events that will occur in the future.

For example, assume a two-input component (with INO and IN1) produces a resultant

output 10 ns after receiving an input. Also assume that component receives a new input on

INO with time-stamp t,, then the result from the new input will be produced at time t, -t- 10

ns. Thus, the component (and its corresponding LP) has a lookahead of 10 ns.

A problem occurs, however, if this LP receives another message on its other input

line IN1 with a time-stamp of t,. where to < t,. First, it throws away the previous result
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calculated for t, + 10 ns. Then it recalculates its output at to + 10 ns and its output at t1

+ 10 ns. Finally, the LP sends out a message for each of these new events. In this scenario,

the Chandy-Misra paradigm is more effective since useless calculations would be avoided.

However, suppose input line INO changes often while input line IN1 only changes

occasionally. The LP is now sits idle for most of the time waiting for INI to give it a "safe"

time (as defined in section 2.1.1). Fujimoto claims this type of situation is typical of a

VHDL simulation. He further claims that such simulations are inherently limited in how

much speedup they can gain from parallel execution (Fuji:39-40).

2.1.5 Deinand-driven Simulation Subramanian and Zargham agree with Fujimoto

that the amount of parallelism one can do with discrete-event simulation is limited.

However, they point out that instead of reacting to input changes, the problem can be

looked at in reverse and the value of the output at time T can be observed. The processor

traces the output signal at time T backward through the circuit, subtracting off the

processing delay of each component through which the signal passes.

Ultimately, the signal will be traced back to the system input signals at a particular

time. The processor already knows the system input values at any given time. Therefore,

the input values are traced forward through the circuit until the the processor can calculate

the final output for the desired time. Usually, the demand-driven approach does not use

every LP to calculate the requested output. Thus, the processor avoids calculating

redundant and useless information. Thus only the information desired is processed, when

it is needed (Subr:486-487).
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There are two drawbacks to the demand-driven approach. First, one does not run

a simulation to get expected results. One runs a simulation to see if there are unexpected

results. Using only the demand-driven simulation paradigm, unexpected effects are masked

at the requested output times; thus, they slip by undetected.

Second, if there is feedback in the circuit, quite a bit of useless calculation could

occur. Suppose the simple circuit shown in Figure 2.3 is simulated and that the delay

through the circuit is 5 ns. Suppose, further, that a '0' is applied to the signal labeled "IN"

at 0 ns and a '1' is applied at 95 ns. Accordingly, an output of '1' is expected at 100 ns on

the signal with the "OUT" label.

IN OUT

Figure 2.3 Simple Circuit with Feedback

Following the paradigm, the computer requests the output value at 100 ns.

Subtracting the circuit delay, the computer inquires for the values of the inputs at 95 ns (100

ns - 5 ns delay). Since one input is the OR gate's output, the computer inquires for the

output value of the circuit at 95 ns, which causes an inquiry for the input values at 90 ns, and

so on. This cycle continues until the computer traces the signals back to the beginning of
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the simulation. Thus, instead of performing one calculation as in conventional simulation

algorithms, 20 calculations are performed on this simple circuit for a very short simulation

run. Extrapolating this example to a simulation composed of millions of subcomponents,

and simulated over several hours, clearly shows this paradigm to be unfeasible.

2.1.6 Sunmary of Approaches The question then is which approach runs discrete-

event simulations more efficiently? It appears that choosing one approach over the others

depends mostly on the application that one is trying to simulate (Proi:7-2). Because of

limitations individual environments place on simulations, and differing requirements of

specific applications, architectures, and mapping strategies, it is difficult to obtain a

meaningful, unbiased comparison.

There exists a simulation scenario for all of the above proposals which shows each

to give the best performance. However, there is no guarantee that any one simulation will

be the only type run or even the most likely. Nic I identifies certain "rules of thumb" that

have proven useful in executing discrete-event simulations (Nico:98):

1) Use Lookahead knowledge.

2) Avoid high message fan-out.

3) If high message fan-out cannot be avoided, then aggregate LPs onto

fewer processors to bypass high communication costs.

4) Use uniform time-increment distributions.

5) Utilize harJware accelerators when using the Time Warp paradigm.

By following the general guidelines above, any simulation mechanism may be used effectively
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for typical discr'ete-event simulations.

2.2 VHDL

2.2.1 Definitions The following definitions are taken directly from Eickmeier's

research [Eick]. Eickmeier arrives at these definitions by combining the writings of several

authors and the research environment at the Air Force Institute of Technology (AFIT).

They work best for describing the VHDL environment used for this research as well.

Design Entity - The design entity is the primary hardware abstraction in VHDL. It

represents a portion of a hardware design that has well-defined inputs and oJtputs and

performs a well-defined function. A design entity may represent an entire system, a sub-

system, a board, a chip, a macro-cell, a logic gate, or any level of abstraction in between.

A design entity has two parts: an entity declaration and an architectural body.

Entity Dec'mation - Defines the entity's interface to the external environment; it specifies

theports ci. the entity in which data may flow in and out. Formally, ports may have a mod-

in, out, inout, and buffer, for showing the flow of data. The first three modes are self-

explanatory. This research d9cs not use the mode buffer. (VLRM) and/or (Lips) provide

a complete description of this mode.

Architectural Body - The description of the internal behavior or structure of a design entity.

A structural description dtcomposes the design entity into lower level entities, and describes

the connections between these entities. A behavioral description is used at the lowest level

of decomposition and shows how the entity transforms inputs to outputs. In this research,

behavioral architectures describe logic gates in the system (e.g., AND, OR, XOR) and
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structural architectures describe all higher-level components (e.g., half adder, full adder,

ripple-carry adder).

Signal - An object that holds a value and directly corresponds to some type of metal

interconnection within a circuit. The signal may change values throughout the simulation.

Port - A signal that appears in the interface list of an entity declaration. See the above

definition for an entity declaration for more details.

Block - A design entity may be described in terms of a hierarchy of blocks, each of which

represents a portion of the whole design.

External Block - The top-most block in a hierarchy. This block is the design entity itself,

and it defines the interface of the design entity to the external environment.

Design Hierarchy - The result of successive decomposition of a design entity into

components. It also binds those components to other design entities that may be

decomposed in like manner. Taken together they represent a complete design. Such a

collection of design entities is called a design hierarchy.

Model - A model is the elaboration of the design hierarchy in the VHDL simulation

environment. The model is executed to simulate the behavioral or structural design

represented by the model.

2.2.2 The VHDL System VHDL is called the "FORTRAN of hardware description

languages" because of its wide acceptance as the standard language for hardware design

(Nash:20). VHDL source code must go through several transformations before a simulation

can be run. The first stage of the VHDL system is the compiler.
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The compiler analyzes the syntax for correctness and performs a static semantic check

of the VHDL source code. The lexical analyzer checks the VHDL syntax and passes tokens

to the parser generator. It is the parser generator that performs semantic checking

(Vyas:402). The semantic analyzer not only checks for errors but also gathers and stores

information on any identifiers used in the source code.

Upon successful compilation, the compiler places the VHDL unit into the design

library. The design library allows the user to compile VHDL entities separately and use

them later without recompiling them (Coel:321). The compiler also translates the VHDL

source into an intermediate form and later uses the intermediate form to create C code for

executing the actual simulation. C was chosen because of its flexibility and its ability to

manipulate machine-level data structures easily (Vyas:403).

Because the VHDL system is set up in the manner described above, it offers several

benefits to the user. These benefits include separate compilation, strong typing, inclusion

of time as part of the simulation, powerful semantic and syntactic features, and the ability

to handle concurrent simulation of components (Coel:321, Vyas:401) (similar to how an

operating system handles multitasking). Although the VHDL language allows concurrent

simulation, the actual, sequential implementation on Von Neuman-type architectures does

not. That is why this research is critical, since it will bring the concurrent execution

abstraction to reality.

Separate compilation grants the user the ability to add entities to the library without

recompiling lower-level components that make up the entity's behavior or structure

(Vyas:401). Thus, separate compilation reduces overall recompilation time. Further,
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because of VHDL's syntax, semantic rules, and strong typing, one can describe the behavior

of a very complicated device in just a few lines of VHDL (Coel:322).

2.2.3 Maintenance Cycle with VHDL An electronic circuit has a three-phase life cycle

associated with iL: 1) design; 2) production; and 3) maintenance. Of these three, the costs

associated with maintenance consist of about 60% of the circuit's life time costs (Wint:145)

as shown in Figure 2.4. Put another way, for each chip, maintenance costs are roughly six

times the cost required for design. Thus, using VHDL not only lowers costs during the

design phase, but lowers overall maintenance costs as well.

The three main reasons cited by Winter and Lowenstein for nigh maintenance costs

are a lack of computer processable data, parts obsolescence, and lack of cooperation

between designers and maintainers (Wint:145). VHDL can help to overcome each of these

barriers. First, chips designed with VHDL can be delivered with the VHDL source code.

VHDL is easier to find and analyze than several volumes of hardcopy documentation and

original design schematics. VHDL also can be processed by a computer, so that design data

does not have to be reentered into a computer for the maintainer to run a simulation on the

system.

Though the military may use a system for twenty years, the manufacturer typical:y

stops production of the system's parts after three to seven years (Wint:146). However, by

exploiting VHDL the military can easily contract with a manufacturer for an obsolete I,.art

to be produced. It is easy because the military will have the original specifications in VHDL,

which can then be used by the manufacturer to produce the needed component. The
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original specifications in VHDL assures the government of receiving the part and guarantees

easy integration into the system. Therefore, DOD avoids time-consuming and costly

research and reverse-engineering.

SLife Cycle Costs Over Time
Phase

Sesign

Production

E] rviintoraric.

5 15 30

Tirne (Years)

Figure 2.4 Phase Cost Comparison.

Finally, as the device passes from design to production to maintenance, any tests that

have been developed can be passed aleng with the VHDL source code (Wint:150). This is

important because currently each stage is developing their own set of tests. many of which

are redundant when combined with the previous stage's test cases. Thus, a maintenance

engineer immediately has a whole suite of tests to help diagnose any problems in the system

without spending valuable time redeveloping these same tests.
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VHDL designs also can transcend corporate borders to improve collaboration and

interaction. Companies are able to use their individual specialties to deliver a high-quality,

well-integrated component to the government (Waxm:310). IEEE's acceptance of VHDL

as IEEE Standard 1076 is what makes cooperation within and between industry and

government possible.

2.2.4 Other VHDL Parallelization Efforts Bhaskar attempted to parallelize VHDL

at the microcode level in 1987 (Bhas:54). Their approach is to transform a sequential

VHDL behavioral description into VHDL made up of statements that can all be executed

in parallel. The algorithm analyzes a VHDL beiiavioral description and converts it into a

--ocess graph. Then, it optimizes the graph for parallel execution. Finally, it translates the

graph back into VHDL source code (Bhas:54). They then translate the VHDL into

MIMOLA to run the simulation. The key to parallelization lies in the process graph. Every

statement within a node of the process graph have no dependencies between them.

Therefore, they can be executed in parallel (Bhas:56). So far only preliminary results are

available, but they are encouraging.

2.2.5 Summary of VHDL Using VHDL, one gains several advantages. First, electro-

nic components can be developed hierarchically. Second, VHDL includes time as an integral

feature of the simulation. Third, conflicts between signals can be identified and resolved.

Fourth, components can be perceived as simulating concurrently. Finally, the simulation can

be validated against a VHDL testbench. These features combine to offer a flexible
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simulation language that executes up to 2,000 even.s per second per MIPS (Coel:322).

Z3 Summary

To advance VHDL to the point where it can execute on a parallel computer, one

must have a solid background in two areas. The first area is how discrete-event simulations,

such as VHDL can be mapped to and executed on a parallel processor. This includes

concerns like timing, rollback, message passing, and lookahead.

The second and more important area is VHDL itself. Unless the workings of

sequential VHDL can be modelled, there is no hope of constructing a prototype for the

parallel implementation of VHDL. As shown by Winters, VHDL not only provides a

technical tool, but an economic one. By using VHDL, maintenance costs for chips being

designed today will be lower. Since chip designs will only get larger and more complex,

VHDL must grow in the same fashion. Chapter 3 provides a blueprint on how to parallelize

VHDL.
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I. Parallel Simulator Design

3.1 Introduction

For one to implement any design on a parallel computer, one must first

comprehend how an equivalent algorithm works on a sequential computer. In this case,

that is the sequential VHDL simulator. After sufficient study, one either designs a parallel

simulator from the ground up or intercepts the process of a sequential simulator and

attempts to switch the process onto a parallel course. Upon completion of the parallel

simulator, one needs experiments to test theories about parallel VHDL simulation. This

chapter describes the detailed layout of the above process as required by the AFIT

environment.

3.2 An Example

Throughout this chapter, the reader is shown how to apply the theory discussed in

Chapter 2 to parallel VHDL simulation. To better explain these ideas and link them

tcgether, an example of a full adder is used. The full adder example shows relationships

between structural and behavioral architectures, timing considerations, and

how to utilize multiple processors. Yet it is simple enough to be understood. Figure 3.1

provides the VHDL entity declaration, and Figure 3.2 depicts the corresponding circuit

diagram.

The delay time shown in Figure 3.1 represents the longest propagation delay

through the full adder. That means that if the user applied a '1' to X, Y, and CIN, then
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-9 ns later he should see a '1' for the value of both COUT and SUM. Therefore, tile delay

for the full adder, as a whole, is considered to be 9 ns.

Entity FULLADDER is
Port (cin, x, y : in BIT ;0 cout, sum out BIT '0');
Constant Delay : Time 9 ns;

end FULLADDER;

Figure 3.1 VHDL Code for Full Adder Entity.

Y X

C CIN

COUTCI

SUM

Figure 3.2 Full Adder
Circuit Diagram.

The logic gates are the lowest level component that are modeled in the circuit.

Therefore, each logic gate is described by a behavioral architecture. Figure 3.3 gives an

example of the entity declaration and behavioral architecture for a simple AND gate (the

OR and the XOR descriptions are similar). The full adder, on the other hand, can be

structurally described as being made up of two half adders and an
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Entity AND is
Port (in_1, in_2: in BIT ;0;

out_1 : out BIT := '0');
Constant Delay : Time := 3 ns;

end AND;

Architecture BEHAVAND of AND is
begin

OUT 1 < = IN 1 and IN 2 after delay;
end BEHAVAND;

Figure 3.3 VHDL Entity and Behavioral Descriptions for
an AND Gate.

Architecture STRUCT FA of FULL ADDER is
-- signal declarations

signal cout 1, cout_2, sum_1 : BIT;
-- component declarations

Component HALF ADDER
Port (x, y : in BIT; cout, sum: out BIT);

end Component;
Component ORGATE

Port (in_1, in_2 : in BIT; outi : out BIT);
end Component;

begin
-- component instantiation

HAl: HALFADDER port map
(x, y, cout 1, sum-1);

HA2: HALFADDER port map
(sum_1, cin, cout_2, sum);

OR1: ORGATE port map
(cout_2, cout_1, cout);

end STRUCT_FA;

Figure 3.4 Structural Description of a Full Adder.

OR gate as shown by Figure 3.2 and described by the structural architecture in Figure 3.4

(a half adder is structurally described by an AND and an XOR).
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Finally, Figure 3.5 shows the VHDL configuration of the full adder. It is the

configuration file which tells the analyzer which architecture (behavioral or structural) is

to be used for each component in the circuit.

use WORK.TESTFULLADDER;
Configuration S CONF FA of TEST FULL ADDER is

for INSTANTIATE FULL ADDER
for FA: FULLADDER use

Entity WORK.FULLADDER(STRUCTFA);
for STRUCT FA

for all: HALF ADDER
use Entity WORK.HALFADDER(STRUCT_HA);

for STRUCTHA
for all : ANDGATE

use Entity WORK.ANDGATE(SIMPLE);
end for;
for all: XORGATE

use Entity WORK.XORGATE(SIMPLE);
end for;

end for;
end for;
for all: OR GATE

use Entity WORK.ORGATE(SIMPLE);
end for;

end for;
end for;

end for;
end S CONF_FA;

Figure 3.5 Configuration of a Full Adder.

3.3 Analysis of Sequential VHDL

3.3.1 Sinulator Oiganization Figure 3.6 shows the typical organization of a

standard sequential simulator used in support of the Standard VHDL 1076. It is made up

of two major components: the analyzer and the simulator. The analyzer checks for

syntactic and semantic errors. If there are none, it then produces an intermediate code
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for later use by the simulator. The simulator (or kernel) takes the intermediate format

and shapes it into executable code to execute the behaviors dictated by the original

VHDL.

VHDL Source CodeI
Analyzer

Simulator

Simulation Output

Figure 3.6 Simulator Organization.

When the circuit itself is simulated, the simulator alternates between simulating

behaviors and updating signals (the connections between the behaviors being simulated).

If one of the updated signals is an input to a behavior, that behavior is executed in the

next simulation cycle to see if the new value of the input has any affect on the rest of the

circuit. Thus, the simulator oscillates between executing behaviors and updating signals

until reaching a quiescent state.

Assume, for example, that all signals (wires) in Figure 3.7 are initialized to '0' at

time 0 ns. Assume also that the propagation delay through each gate is 3 ns. Next, a '1'

is scheduled for CIN at 50 ns.
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Figure 3.7 Full Adder
Circuit Diagram.

The simulator first executes every gate at time 0. Following the paradigm, the next

step is to update the signals. Since no signal values changed from the initialization step,

the next event (signal update) takes place when CIN goes from '0' to '1' at time 50 ns.

The simulator updates the simulation clock to 50 ns, and schedules for execution all

behaviors (gates) for which CIN is an input. Next, the simulator executes the behavioral

descriptions for gates 2 and 3, which results in scheduling a change to SUM from '0' to '1'

at 53 ns. The output of gate 2 does not change. Then the simulator updates its clock to

53 ns and applies the signal change to SUM. Since SUM is not an input for any behavior

and there are no more input changes for X, Y, or CIN, the system is quiescent at 53 ns

and the simulation stop's.

The heart of the simulator contains a core to keep track of the current simulation

time and the signal update times. As the next signal update time arrives, the simulator

updates the value for the signal and schedules the behavior for which the chdnging signal

is an input. The output from that behavior is saved along with the time which the new
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output will occur. When the simulation clock reaches that time, the simulator updates the

signal, and schedules any behaviors for which the second signal is an input to execute.

Thus, the cycle repeats until all signals are stable. The IEEE VHDL Language Reference

Manual calls this cycle the "kernel process" (VLRM:B-8).

3.3.2 The Inteuetrics VHDL Simulator Analyzing the Intermetrics VHDL

simulator is easier at AFIT since the Air Force has the source code available to use as

reference. Intermetrics design for their analyzer and simulator follows the pattern

described above. Their system is made up of five stages: the analyzer, the model

generator, the simulation builder, the simulation kernel, and the report generator.

The analyzer checks for syntactic and semantic errors and produces an intermediate

format image of the VHDL source. Tht model generato, produces C source files which

takes intermediate IVAN files and produces from them C source files. The newly created

C source is compiled into an object module, then the C source is deleted. The build phase

links all of the new object modules as well as the Intermetrics VHDL simulator together

and compiles them into a executable C module. The executable C module calls routines

in the Intermetrics simulator which precludes one from running the simulation without the

Intermetrics simulator. The kernel executes the simulation and the report generator

produces a record of the signal changes for the user. A diagram of the Intermetrics

process is provided in Figure 3.7.

With the assistance of personnel at Intermerics, AFIT was provided with a switch

which prevents the C source files from being deleted. This switch reports the name of the

C source file that models the VHDL unit's behavior, its header file, and the corresponding
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object file. Thus, one is able to analyze the C files in an attempt to see what constructs

and variables in the VHDL source correspond to the constructs and variables in the C

source code. After finding a correlation, one can manipulate the VHDL to alter the C

source. This knowledge is crucial in that one cannot possibly understand what the C

modules are doing unless he understands the VHDL behavior that is being simulated.

FVHDL]

I.hCleI

Sefiles
I Culad e I 1

reer C files=10 file j

Figure ~~ . Ills Inemtis filesaton

3 Simulati
jSIM file

I report

.rpt file

Figure 3.8 Intermetrics' Organization.

3.4 Approaches to Parallel VHDL Simulation

Now comes the task of creating a VHDL simulator to run on a parallel computer.

One option is to write a VHDL simulator, ensuring total control of the process. However,

writing a VHDL simulator from the gruund up is either a multi-year effort or provides too

limiting a subset of VHDL as to be useful. Therefore, rewriting the Intermetrics VHDL

simulator to include commands for a parallel processor is a better option, since the

Intermetrics source code is aailable to the Government. Thus, the plan for this thesis is
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to intercept the process after the C source files are produced and modify the C source

code for parallel execution.

3.5 Data Structures

After choosing to use the Intermetrics' analyzer and model generator as a

preprocessor for parallel simulation, it is logical tU implement the system using their data

structures as well. There are four main data structures that are the key to the simulation.

They are the data structures for signal records (sr), behavioral instances (bi), behavior list,

and active records. Figure 3.10 shows the signal record structure and Table 3.1 gives the

implementation of the full adder example (Figure 3.9).

Y XCT x
c0of_ SUM GIN

Figure 3.9 Full Adder Circuit
Diagram.
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id = unique integer identifier
size = number of bytes required for value
name = pointer to the signal's name
cval = integer offset for the signal's

current value
conns = pointer to a behavior list

Figure 3.10 Signal Record Data Structure.

The "id" field is a unique numeric identifier which corresponds to a particular signal

(or wire) in the circuit being modeled. The "name" field is the name that is output

whenever there is a change in the signal. Currently, since only digital l's and O's are used,

the "size" field is always equal to one. All current signal values are kept in a common area

in memory. The "cval" field is the offset from the beginning of the common area where

this particular signal's current value may be found. Finally, "conns" is a pointer to a list

of behavioral instances for which this signal is an input. Thus, when this signal's value

changes, one uses the conns field to check if the change must be propagated through the

circuit.

Table 3.1 Examples of Signal Records.

id size name cval conns
0 1 Y 0 0,1
1- 1 X 1 0,1
2 1 CIN 2 2,3
3 1 COUT 1 3 4
4 1 SUMI 4 2,3
5 1 COUT 2 5 4
6 1 SUM 6
7 1 COUT 7
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id = unique positive number
exec = address in memory
inputO = pointer to input signal record

inputN = pointer to input signal record
outputO = pointer to output signal record

outputN = pointer to output signal record

Figure 3.11 Behavior Instance (BI) Data Structure.

As for the behavioral instances, Figure 3.11 shows their structure. The "id" is a

unique identifier for each behavioral instance, and "exec" is the address of the behavioral

instance subroutine. Pointing to the "exec" address and passing the pointer to the

behavioral instance data structure as a parameter invokes the subroutine. Figure 3.12

displays part of the AND routine.

int AND_Output Value;
/* cv is the current value memory space address */

if (*((int *)(cv + InputO->cval))) {
ANDOutputValue = *((int *)(cv + Inputl->cval));

} else {
ANDOutputValue = FALSE;

}
GateDelay = 3 ns;
posts8 (OutputO, ANDOutputValue, GateDelay);

Figure 3.12 Code Excerpt From AND Routine.

The number of input and output signal record pointers that each behavioral

instance (BI) has depends on the behavior being modeled. Table 3.2 shows the BIs at

initialization for the full adder example. The structure of the behavior list is simply a
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linked list of pointers to behavioral instances that are scheduled to execute during this

simulation time. Figure 3.14 shows an example of the behavior list.

Table 3.2 Examples of Behavioral Instance Records.

id exec inputO inputl outputo
0 address(AND) 0 1 3
1 address(XOR) 0 1 4
2 address(AND) 2 4 5
3 address(XOR) 2 4 6
4 address (OR) 3 5 7

time = positive 32-bit integer
sr ptr = pointer to a signal record
value = positive integer
nextsig_rec = pointer to an active record

Figure 3.13 Active Record Data Structure.

There is one final data structure which is important in understanding the VHDL

simulator. That is the active record. Figure 3.13 depicts its structure. The "time" field

contains the simulation time at which the event that the active record represents is to take

place. The "sr ptr" points to the signal record of the changing output signal. The "value"

field of the active record holds the new value (logic '0' or '1). Lastly, the "next-sigrec7

points to the next record in the active record list. Table 3.3 shows how CIN's (signal

record 2's) change from '0' to '1' at 50 ns is represented on the active record list.
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Table 3.3 Active Record Example.

time sr_ptr value next sig rec
50 2 (CIN) '1' NULL

Figure 3.14 shows how the data structures shown above are interrelated for the full

adder example. The relationships between these data structures are important in

understanding how a basic discrete-event simulation works, as explained in the next

section.
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Signal Records
Active Records ld size name oval conns

time 50 0 1 Y 0 01l
srJptr 2 1 1 X 1 01l

2 1 CIN 2 ......:2,3
vau31 1 COU _ 3 4

5 1 COUT_2 5 4
6 1 SUM 6.
7 1 cour 7

Behavior List Behavioral Instances
beh 0
nextb

Id 2
exec AND,
InputO 2
inputl 4

'0'

nxbid 3 4- 01

exec XOR,
be 3inputO 2
nxbinputl 4 AND routne

outputO 6 XOFI routne

Id) 4 OR routine

nextb Nil exec 0O,000000Ro

InputO 30
inputi 5 Main Memory
output0 7

Figure 3.14 Interrelationship of VHDL Simulation Data Structures.
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3.6 Process of Simulation

3.6.1 The Simulation Qcle Intermetrics' sequential simulator is the model for the

parallel simulator. There are four routines which are needed to run the simulation.

Figure 3.15 shows a diagram of the simulation cycle. The first is a post routine which

posts each event (i.e., updates a signal's value) whenever a new output is generated.

Active
Records

Figure Simulation Clock

The econ isa prceslowtim r o chnlzeshsimlto tmso

: Low

Post

Values

Figure 3.15 The VHDL Simulation Cycle.

The second is a process-low-time routine which analyzes the simulation times of

each active record and advances its simulation clock to the lowest of those times. Then

it removes any active records that are stamped with the new simulation time. If the

signal's value in memory does no!t match the value on the active record, the computer

assigns the value on the active record to the signal's value location. If, on the other hand,

the signal's value in memory de match, the record is tossed away as if it had never

3-15



occurred. If the signal's value changes, any behavioral instances for which the changing

signal is an input is added to the Behavior List. Table 3.4 shows the Behavior List.

Table 3.4 Behavior List.

RECORD NUMBER beh nextb
1 2 2
2 3 Nil

The last routine which is needed is one that removes each record on the Behavior

List and executes the corresponding behavioral instance. The simulation, or execution, of

the behavioral instance (e.g., AND, XOR, OR) calls the post routine to posts its output

signals, as Figure 3.13 depicts. Thus, the cycle continues. Eventually, after all inputs have

been exhausted, the simulation of the circuit reaches a quiescent state and the simulation

ends.

Using the data structures presented in Figure 3.14, one can walk through the cycle

in Figure 3.15. After initializing the simulation, the simulator adds all input changes to the

Active Records using the post routine. Therefore, there is now one Active Record, as

shown in Figure 3.14. Since there is only one entry in the Active Records, the low time

is obviously 50 ns. The simulator updates the simulation clock to 50 ns and removes all

Active Records which have a time stamp for 50 ns.

As the simulator removes the records, it compares the value on the record is

compared with the current value for the signal pointed to by the "sr_ptr" field. Recall that

all signals are initialized to '0'. Since the value on the Active Record is '1' the simulator
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updates signal number 2 to a '1'. Looking at the Signal Record for signal number 2, the

"conns" field shows that signal 2 is an input for both behavioial instance number 2 and

behavioral instance number 3. Therefore, the simulator adds two records to the Behavior

List, one for BI number 2 and one for BI number 3. Since there are no more Active

Records to process for simulation time 50 ns, all signal updates are complete and

executing the behavioral instances can begin.

The simulator executes BI number 2 by calling the AND routine and passing a

pointer to the BI as a parameter for the AND routine. The AND routine pulls in the

current values for "input0" and "inputi", which correspond to "cv" plus "cval" for signal

records 2 and 4. (Recall that "cv" is the address in memory where the current values of

all of the signals are stored; "cval" is an offset from "cv.") The value for signal record 4

is still a '0', but signal record 2 has been updated to a '1' value. The AND routine

calculates i~s output from the above inputs and posts this value by calling the Post routine.

The AND routine passes its delay time, and the "output0" field so that the Post routine

will know what signal to update (5, in this case) and when to perform the update. The

Post routine then adds the simulation time to the delay time (50 + 3 = 53 ns) and puts

a record to the Active Records with field values of "53, 5, '0'." The Post routine and the

AND routine are now finished.

The Behavior List is not yet empty, so the simulator executes BI number 3. Its exec

field points to the XOR routine, with input signal records 2 and 4. The simulator

calculates the XOR output for the current values (at 50 ns) of signals 2 and 4, which are

'1' and '0', respectively. This produces a '1' for an output value. The XOR gate also has

a delay of 3 ns, so the output for signal 6 is posted for a '1' value, occurring at 53 ns (50
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+ 3 = 53 ns). Thus, the simulator adds another Active Record with "53, 6, '1"' for the

field values of the record. The Post and XOR routines are now finished. Table 3.5 shows

what the Active Records look like at this point in the simulation.

Table 3.5 Current Active Records.

RECORD NUMBER time sr ptr value next sig rec
1 53 5 '0' 2
2 53 6 '1' NULL

So far, one cycle in the simulation (updated signals and executed behaviors) has

completed. Continuing, the process-low-time routine looks for the lowest time among the

Active Records, which is 53 ns. The simulator updates the simulation clock to this time

and removes every Active Record with "53" in the time field. Removing record number

1, the simulator compares signal number l's current value to the value on the active

record. They are both '0' so the record is discarded. Active Record 2 points to Signal

Record 6, which has a '0' for the current value. The active record has a '1' for the value,

so the simulator changes the value for Signal Record 6 to a '1' and adds all Behavioral

Instances to which Signal Record 6 is connected, to the Behavior List. Since Signal

Record 6 has no entries in the "conns" field, it is not an input to any Behavioral Instance.

Now both the Active Records and the Behavior List are empty, so the simulation is

complete.

Figure 3.16 provides the pseudocode for the procedure described above. It goes

into a little more detail since the pseudocode must check for all variations of the
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simulation, but one bhould be able to correlate the example discussed in this section with

Figure 3.16.

assign a numeric identifier to every signal
assign a numeric identifier to every behavioral instance (gate)
link behavioral instances to their input signal records
initialize all signal values for Simulation Time 0
schedule all behaviors to execute for time 0 by adding them

to the Behavior List
while (Behavior List is not empty) loop

while (Behavior List is not empty) loop
execute the behavior
post all signals output by adding it to the Active Record

list with parameters (output signal record, current
simulation time + delay time, new output value based on
current value of inputs)

delete behavior from behavior list
end loop
assign the lowest time on all of the Active Records to

Simulation Time
while (an Active Record has not been analyzed for this

Simulation Time) loop
if (Active Record Time matches Simulation Time)

if (new output value = old output value)
delete record from Active Records (throw it away)

else
assign new output value to signal record
add any behavioral instance for which this signal is

an input to the Behavior List
delete record from Active Records

endif
select next Active Record

endif
end loop

end loop

Figure 3.16 Pseudocode for Sequential VHDL Simulation

3.6.2 The VHDL Test Bench It is the test bench's VHDL source code which

changes the input values for the circuit that is being simulated. A test bench is a structural
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architecture, in and of itself, which uses the circuit that is being tested as its only

subcomponent. In the case of the example, a test bench is used to test the full adder.

Entity TEST FULL ADDER is
end TEST_F-ULLADDER;

Architecture INSTANTIATE FULLADDER of TESTFULLADDER is
Component FULLADDER

port (ci, x, y : in BIT := 0; cout, sum : out BIT '0');
end Component;
Signal cin, x, y, cout, sum, cout_1, cout 2, sum_1, BIT;

Begin
FA: FULLADDER

port map (cin, x, Y) cout, sum);
-- input test values into full adder

cin < = '0' after 0 ns, '1' after 50 ns;
x <= '0' after 0 ns;
y <= '0' after 0 ns;

end INSTANTIATEFULLADDER;

Figure 3.17 VHDL Source Code for the Full Adder Test Bench.

3.7 The iPSCI2 Hypercube

Intel's iPSC/2 Hypercube is a distributed memory, parallel processing computer

which is made up of 2" independent, 32-bit 80386 processors, where n >_ 0. Since there

is no shared memory, the processors must convey information to each other via communi-

cation channels. These channels serve to connect the processors together along n

dimensions (where n is the same value used above). Therefore, in order for a message

to travel from one node to another, it may have to travel through n-1 interim nodes before

finally reaching its destination.
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The iPSC/2 incorporates a separate coprocessor, called a Direct Connect Module

(DCM), to handle all message traffic passing through the node. Thus, the main CPU is

free to concentrate on useful calculations. Since communication between nodes incurs a

significant amount of overhead in terms of time, one must ensure that there is enough

computation occurring on each node to warrant the communication time between itself

and other nodes.

3.8 Parallel Simulation Issues

3.8.1 The Parallel Design The sequential model can now be extended to a parallel

processor. The objective of parallel processing, to decompose a large problem into

smaller problems, solve the small problems, then combine the results to solve the original

larger problem. With this objective in mind, the obvious way to decompose a VHDL

simulation is to simulate only a portion of the circuit on each processor. Therefore,

individual gates are assigned to particular nodes.

As far as data structures are concerned, it is easier to initialize the entire data

structure on each node than to partition it like the BIs. There are several reasons for this

design decision. First, it avoids the overhead involved in analyzing which signals are

attached to the BIs on the node. The position of cval offsets in memory on a node need

not be determined since it is always the same. Organizing the generated C source code

on a node to initialize only the signals and BIs on that node requires extensive

modification for every new mapping. Because of these problems and others, the data

structures on each node contain every signal and behavioral instance in the simulation.
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However, a particular node is not concerned that the entire data structure is kept

current. Only the signals which are inputs to a BI that assigned to the node or a system

output signal (one that generates an output statement for the user) needs to be updated.

Therefore, a node only updates and uses the portion of the data which it needs.

If a signal change takes place on node 0, and that signal is an input for a BI that

resides on node 1, node 0 must somehow convey the signal change to node 1. Since in the

sequential model, such a change is applied by posting an Active Record, the model can

be extended and the change simply posted into node l's Active Records. This is done by

passing a message from node 0 to node 1 with the necessary information. In fact, if the

signal is not an input for any BI on node 0, node 0 need not post the change to its own

Active Records. These messages from node to node effectively link the simulation

together to depict a coherent and correct VHDL simulation of the circuit. Figure 3.18

depicts two nodes posting messages to each other's Active Records.

Node 1 Node 0

Figure 3.18 Simulation Model for Two Nodes.
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To support the parallel model of Figure 3.18 the nodes must be aware of which

behavioral instance is assigned to which node, which nodes are dependent on other nodes

for signal update information, and when it is safe to execute the next event in the Active

Records. The "queue.dat" file contains the node assignment of each behavioral instance

in the simulation. The queue.dat file is made up of lines of tuples ("x, y") where x is the

behavioral instance number and y is the node number to which x is assigned.

The "lp.arcs" file gives the node dependency. It also contains lines of tuples ("x, y")

which represent "x passes messages to y." In such a case, x is called an upstream processor

relative to y, and y is called a downstream processor relative to x. More is said about the

queue.dat and lp.arcs files in Chapter 4.

The last problem is handled by using the Chandy-Misra paradigm. Any of the

paradigms discussed in Chapter 2 might have been used. However, Chandy-Misra was

picked for two reasons. First, Chandy-Misra is the paradigm used in most of the previous

parallel work at AFIT; thus, this work is consistent with the current AFIT. environment.

Second, this thesis tests Fujimoto's and Subramanian's belief that VHDL simulations using

Chandy-Misra are inherently limited in the amount of speedup they can realize. The next

section covers how Chandy-Mis-a is implemented for parallel VHDL simulation.

3.&2 Chandy-Misra Paradigm Every node is simulating its portion of the circuit as

a logical process (LP). Thus, there exists an inherent "safe" time to which a downstream

node might be able to process. That "safe" time for downstream nodes is the current

simulation time of the upstream node, plus the minimum delay time of the upstream

node's LP.
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For example, suppose one LP is assigned per node and using two LPs are needed

for the simulation. Further, assume that LP0's simulation clock is at 100 ns, LPI's clock

is at 95 ns, and the last gate on LPO has a delay of 5 ns. Since LP1 knows that LPO's clock

is at 100 ns and that LPO's minimum delay time is 5 ns (its last gate delay), LP1 also

knows that it cannot receive a signal change message from LPO for any earlier than 105

ns (clock time + minimum delay time). Thus, it is safe for LP1 to simulate up to 105 ns.

The key is to keep all downstream processes advised of updates to the simulation time.

Therefore, whenever the simulation clock changes on a node, the updated time plus

the LP delay must be sent to all downstream nodes. This message announces to the

downstream nodes the earliest simulation time at which the first node may cause an event

to occur on the second node. Thus, each node can keep track of its "safe" time and

simulate up to that time.

Further, according to Chandy-Misra, whenever a node receives a time update from

an upstream node, it must add in its minimum propagation delay and pass the updated

time onto all of its downstream nodes. This proves to be useful both in keeping the down-

stream processors busy and in preventing deadlock from occurring. Since there is no

actual signal change attached to these messages, they are called "NULL" messages and

although they provide no useful information other than simulation time, they are essential

to the Chandy-Misra paradigm.

A problem can occur, however, when there is feedback between the LPs. To

continue the example, assune now there is feedback from LP1 into LPO and that LPI's

minimum delay time is 5 ns. Now LP1 is dependent on LPO and LPO is dependent on

LP1.
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In continuing the simulation, LPO must now wait for a message from LP1 since its

safe time is 100 ns (LPI's time + LPI's minimum delay). LP1 simulates up to 105 ns,

sends a message to LP0, and waits for a new safe time from LPO. It is now safe for LP9

to proceed. LPO simulates up to 110 ns, sends a message to LP1, and waits for a new safe

time from LP1. This "turn-taking" type of simulation will continue until the simulation

ends. Since LP1 must wait while LPO processes and vice-versa, any chance of parallel

execution is eliminated. When the time required for communication between nodes is

added to the time for turn-taking simulation, it takes longer to execute the simulation on

two nodes than it takes to execute the simulation sequentially. Therefore, it is imperative

to avoid feedback situations in parallel simulation.

3.8.3 Internode Dependence One interesting characteristic of parallel simulation is

that an output signal on node 0 may also be an input signal on node 1. In such a case,

the proper behavioral instance must be scheduled for the correct event time on node 1.

This is the main reason for using the Chandy-Misra paradigm; to ensure that node 1 has

not already processed beyond the new event time. Thus, a message must be sent from

node 0 to node I which adds the active record into node l's active record list.

If the signal is also an input for a behavior on any other node (including itself) the

active record must be added to that node's active record list as well. Therefore, each node

in the simulation is made aware if any such dependencies exist. Otherwise, a node must

broadcast every signal change to every other node, most of which do not need the

information. By using the lp.arcs file, sending and receiving irrelevant messages is a-voided

and more processing time is used for simulation.
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The user places each Behavioral Instances on a particular node using the queue.dat

file (exactly, how this is done is discussed in Chapter 4). Since the user know where every

Behavioral Instance is and to what other Behavioral Instances a given BI is connected, he

can map out the dependencies between the nodes. This dependency information is placed

in the lp.arcs file.

Node 0N

• I ("-J k\3'

; ' Y X

\~~ I Nde
2 31

COUT I

"- - Node 2

Figure 3.19 Full Adder Circuit Diagram.

Suppose gates 0 and I are mapped to node 0, gates 2 and 3 to node I and gate

4 to node 2. as shown in Figure 3.19. That means that node 2 is dependent on nodes 0

and I since the output of gates 0 and 2 are inputs for gate 4. Node I is dependent on
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node 0 since gates 2 and 3 require the output of gate 1. The lp.arcs file for the above

mapping is:

01
02
12

In the example ab ive, I '2 is dependent upon both LP1 and LPO. The queue.dat file tells

which behavioral instance is assigned to which node. The queue.dat file for this example

is:

00
10
21
31
42

In the lp.arcs file, the second number shown on each line is dependent upon the

first. For the queue.dat file, the first number is the behavioral instance identifier and the

second number is the node on which the user wants the BI placed. The example above

shows BI 2 (AND gate 2) and BI 3 (XOR gate 3) are assigned to node 1.

Since the mappings of the circuit varies depending on the number of nodes being

used, the queue.dat and lp.arcs files change, as well. Changing these files every time the

simulation is run on a different number of nodes is unacceptable. Therefore, the simulator

uses a set of files called lpN.arcs and queueN.dat, where the "N" is equal to the number

of nodes to be used.

3.&4 Eliminating Unnecessay Features During the analysis of how to execute the

simulation functions in parallel, some of the nonessential features of the sequential

simulator were omitted in favor of design simplicity. For example, Intermetrics' simulator
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includes a trace feature. The trace is used in debugging a circuit design in that it allows

one to see what an internal signal's value may be at any point in the simulation.

Obviously, this feature requires a lot of overhead for state saving of every signal

throughout the simulation. Since that aspect of the simulator is not a concern, all

references to trace structures in the generated C programs are deleted. Choosing to leave

out certain parts of the simulator increases the chances of running a complete parallel

simulation without being distracted by unnecessary details. By completing a prototype

simulator, efforts can be focused on the making parallel simulation feasible and efficient.

3.9 The Simulation

In order to test the parallel simulator, three structural models that go down to the

gate level are used. The first model is a structural architecture of a ripple-carry adder.

The ripple-carry adder is composed of eight full-adders. Each full-adder is made up of

x Y
x Y

Half Adder GIN

COUT Z

a) COUT Z

b)

Figure 3.20 Configuration of a) Half Adder and b) Full Adder.
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two half-adders and an OR gate. Each half-adder, in turn, is comprised of one AND gate

and one XOR gate. The propagation delay through each of these gates is given in the

VHDL source code as 3 nanoseconds (ns). Figures 3.20 and 3.21 show the complete

component leveling from the half adder through the ripple-carry adder.

X(7) Y(7) X(6) Y(6) X(5) Y(5) X(4) Y(4) X(3) Y(3) X(2) Y(2) X(1) Y(1) X(O) Y(O)

full full full full full full full full GIN
adder adder adder adder adder adder adder adder

GOUT Z(7) Z(6) Z(5) Z(4) Z(3) Z(2) Z(1) Z(0)

X(7) Y(7) X(6) Y(6) X(5) Y(5) X(4) Y(4) X(3) Y(3) X(2) Y(2) X(1) Y(1) X(O) Y(O)

~IN

COUT Z(7) Z(6) Z(5) Z(4) Z(3) Z(2) Z(1) Z(O)

Figure 3.21 Ripple-Carry Adder Configuration.

Figures 3.22 and 3.23 display the circuit diagrams for the other two test cases, the

Carry-Lookahead Adder and the Carry-Save Adder, respectively. The original VHDL

source code and the corresponding Intermetrics-generated report is shown in Volume II.

One may wish to refer to that volume for further information on the exact content of the

VHDL source files.
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Y3X3) Y(2) X(2) Y(1) X(1) Y(O) X(O)

CIN

a) Z(3) Z(2) Z(1) Z(O)

COT4-bit 4-bit GIN

carry lookahed carry lookahed
adder adder

b) Im I() Z5 () Z3) Z2 ~) Z
Figure 3.22 Carry-Lookahead Adder Configuration for a) 4 bits, and b) 8 bits.
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X(7) X(6) X(5) X(4) X(3) X(2) X(1) X(O)

Y(7) Y(6) Y(5) Y(4) Y(3) Y(2) Y(1) Y(O)

Z(7) Z(6) j(5) Z(4) Z(3) Z(2) $ Z(1) I Z(O)

C(7) C(G) C(5 ) C(4) 0(3) 0(2) 0(1) 0(0)

S(7) S(6) S(5) S(4) S(3) S(2) S(I) S(O)

Figure 3.23 Carry-Save Adder Configuration.

3.10 Summary

Obviously, there are many factors to be considered before running VHDL

simulations in parallel. One must have a model for sequential VHDL execution from

which to start. After the sequential model is understood, a parallel architecture is chosen

and any constraints which that architecture imposes are identified. Then the application

is adapted for parallel execution, allowing for any hardware limitations, such as

communication, mapping, and timing requirements. Once the parallel model is running,

its output must be verified in that it matches what is produced by the sequential simulator.

The actual implementation of the above issues is the subject of Chapter 4.



IV Implementation

4.1 Introduction

This chapter explains the specific implementation of capturing the C source files

generated by the VHDL compiler and integrating these files with hypercube subroutines to

execute the simulation in parallel. With this objective in mind, this chapter explains how to

implement the design specified in Chapter 3 on the iPSC/2 hypercube. By following the

steps given here, several new, larger, and more interesting VHDL simulations can be run.

4.2 Editing Intennetrics-Generated C Source

4.2.1 Capturing C Source Code In a standard Intermetrics simulator, the "mg" or

model generate command performs four functions in sequence. It extracts the model's

behavior from the IVAN file which corresponds to the model the user wants generated. It

creates C source and header files which will emulate the same behavior as in the IVAN

description. Then the computer compiles the source file into an object file. Finally, the

computer deletes the header and source files it just created.

By utilizing a switch (-debug=cknd) provided by Intermetrics, the C code that is

generated by the model generate phase is not deleted. This ability allows the C code to be

transferred to another computer, compiled there, and linked with parallel simulator routines.

The advantage is that the code has already been syntactically and semantically checked by

the Intermetrics' VHDL compiler, and it corresponds to the behavior that the user wishes

to simulate. Figure 4.1 depicts a typical script file that may be used to compile and simulate
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the full adder using Intermetrics' simulator. The commented # mg" lines are not actually

executed, but serve as reminders that these models must be compiled and generated before

the full adder structural model is generated.

#!Ibin/csh
vhdl faentity
vhdl fa struct
vhdl test full adder
vhdl s conf fa
# mg '-debug=cknd or-gate(simple)'
# mg '-debug=cknd xorgate(simple)'
# mg '-debug=cknd and gate(simple)'
# mg '-debug=cknd half _adder(struct ha)'
mg '-debug=cknd fulladder(struct fa)'
mg '-debug=cknd testfulladder(instantiatefulladder)
mg '-debug=cknd -top s conf fa'
build '-debug=cknd -replace -ker=struct fa sconffa'
sim struct fa
rg structfa fulladder.rcl

Figure 4.1 Sample Compilation Script File.

Figure 4.2 displays a sample of a computcr session in which the above model

generate and build commands are entered. Notice that the model generator identifies the

C source files which represent the behavior of the model being generated.

As shown in Figure 4.1 and 4.2, one may also use this "-debug=cknd" switch for the

"build" phase. In the build phase, all of the models which make up the behavior of a circuit

are linked together. Thus, by using the switch in building the simulation, the user can then

access a file, called the "kernel corn" file, which will tell him which source files need to be

linked, where they are, and in what order they must be compiled.
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USER COMMAND> mg '-debug=cknd fulladder(struct-fa)'
Standard VHDL 1076 Support Environment Version 2.1b - 1 February 1990
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

Object file •/usr/vhdl/shiplib/ron/FN2857.o
H file :/usr/vhdl/shiplib/ron/FN2858
C file /usr/vhdl/shiplib/ron/FN2859.c

USER COMMAND> mg '-debug=cknd testfulladder(instantiatefulladder)'
Standard VHDL 1076 Support Environment Version 2.1b - 1 February 1990
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

Objectfile :/usr/vhdl/shiplib/ron/FN2867.o
H file /usr/vhdl/shiplib/ron/FN2868
C file /usr/vhdl/shiplib/ron/FN2869.c

USER COMMAND> mg '-debug=cknd -top s_conffa'
Standard VHDL 1076 Support Environment Version 2.1b - 1 February 1990
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

Object file :/usr/vhdl/shiplib/ron/FN2872.o
H file /usr/vhdl/shiplib/ron/FN2873
C file :/usr/vhdl/shiplib/ron/FN2874.c

USER COMMAND> build '-debug=cknd -replace -ker=struct fa sconf fa'
Standard VHDL 1076 Support Environment Version 2.1b - 1 February 1990
Copyright (C) 1990 Intermetrics, Inc. All rights reserved.

Kernel com file is /usr/vhdl/shiplib/ron/FN2877

Figure 4.2 Example User Session.

Figure 4.3 displays the build shell file, /usr/vhdl/shiplib/ron/FN2877, which is created

by the Intermetrics' buid phase. One can ignore the files in the "usr/vhdl/shiplib/std"

subdirectory since they are Intermetrics' object files. One may either make note of the file

numbers as the models are being generated, or instead add two to the ".o" file numb,.rs

given in the build shell file. (Notice that the C file number is always its corresponding object

file number plus two.) The ".c" file in Figure 4.3 is the "main" routine which drives the

program, so that one must link any other needed object modules while compiling this file.
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#!lbin/csh
if ( $?VHDLLIBSIM 0 = ) then

if ( ! -e /usr/local/Iibllibsim.a ) then
echo NOLIB > bid_18042cn1.log
exit 1

endif
setenv VHDLLIBSIM -Isim

else if ( ! -e $VHDLLIBSIM ) then
echo LIBSM > bid_18042cnl.Iog
exit 2

endif
cc -g -o /usr/Vhdl/shiplib/ron./PN2875 /usr/vhdl/shiplib/ron/FN2879.c
/usr/vhdl/Shiplib/ron/FN2872.o /usr/vhdl/shiplib/ronfFN23O.o
/usr/vhdl/Shiplib/ron/PN240.o /usr/vhdl/Shiplib/ronIPN22O.o
/usrlvhdl/shiplib/ronIFN2l54.o IusrlvhdllshipliblronlFN2857.o
/usr/vhdl/Shiplib/ron/FN2867.o /usr/vhdl/shiplib/std/FN240.o
/usr/vhdl/Shiplib/Std/FN\235.o /usr/vhdl/Shiplib/std/FN225 .0
/usr/vhdl/shiplib/Std/FN25.o, $VHDLLIBSIM -Icurses -ltermlib
-Im -Ic >& bid_18042cn1.Iog
exit $status

Figure 4.3 Build Shell File.

The files above are each representative of some portion of the model to be simulated,

as Table 4.1 shows. "FN2875" is the name of the executable file that all of the following files

are linked into. It is used by the Intermetrics' simulator, and is not suitable for parallel

simulation purposes; thus, it can be ignored. "FN2879.c" is the "main" C routine which

simply calls six subroutines that actually run the simulation. "FN2872.o" is thle object file for

the configuration source file of the full adder, FN21874.c. Therefore, FN2874.c is copied into

the big C source file. Files 'FN230.o", 'FN240.o", and "FN220.ot' are the object files which

represent the behavior models for an AND gate, XOR gate, and OR gate, respectively. So

FN232'-.c, FN242.c, and FN222.c are appended to the big C source file. "FN2154.o" and

"FN2857.o" are the object files of the structural models for a half adder and full adder,
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respectively. Thus, FN2156.c and FN2859.c are appended. Finally, "FN2867.o" is the object

file for the full adder test bench; so FN2869.c is appended.

Table 4.1 Intermetrics' Generated Files.

Object File C File Purpose of File
FN2879.-c Main Program

FN2872.o FN2874.c Configuration
FN230.o FN232.c AND Model
FN240.o FN242.c XOR Model
FN220.o FN222.c OR Model
FN2154.o FN2156.c Half Adder Model
FN2857.o FN2859.c Full Adder Model
FN2867.o FN2869.c Test Bench

Notice, the order in which these files are concatenated is important. If a file is

brought in out of order, errors result when the large C file is compiled. The order of the

C files mentioned above would be FN2874.c followed by FN232.c, FN242.c, FN222.c,

FN2156.c, FN2859.c, FN2869.c, and FN2879.c.

The C source files must be compiled and linked in the same order that is used by the

standard VHDL simulator. Alternatively, one may opt to compile the files separately and

link them at the end as is Intermetrics' approach. But a single file requires less modification.

Therefore, this thesis only describes how to proceed after the C source has been concate-

nated into one large file.

4.2.2 Editing the Big C Source File Since the source file contains calls into the

Intermetrics similator routines, these routines must either be replaced by new routines or

the calls must sornchow b,. deleted. Most of the calls are to new routines for the parallel
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simulator. However, some portions of the Intermetrics simulator, such as the trace routines,

are too involved to replace. Therefore, the user must eliminate all references to the trace

routine.

The only addition to the code is made to attach the correct name to each numeric

signal identifier. Scalars and bit vectors must be handled differently, but neither proves to

be a problem. The steps required, shown below, are currently performed by hand.

However, this transformation process has potential to be easily automated. Figures 4.4

through 4.17 provide examples of how the steps below are implemented. The numbers that

appear in braces at the end of some lines correspond to the step that applies to that line

and are no! part of the code.

1) The config file is brought in first, so it will "include" all necessary header files.
Therefore, delete any line below the config file which contains the "# include"
string.

2) Find all lines that contain "# include fn26" or "# include FN26" and delete them.
3) Change the paths of all remaining include files to the proper path. For example,

if these header files are copied to the local directory, then
"/usr/vhdl/shiplib/ron/FN2858" should be changed to "FN2858" as well.

4) Find all lines that contain "{trace" and delete from "trace" to the end of the line
(leaving the "{").

5) Find all lines that contain "if (trceqp) {" and delete the entire structure
associated with it (until the matching "}").

6) Delete any line containing the strings "trace" or "TRAREC" (if done by hand,
"grep -v" works very well for this).

7) The last routine called by the main routine will be called "Z5xxxxxx" (where
"xxxx" can be any series of numbers and letters). Insert "cv = init cv
before the first line in the rotitine. The next line should be "Zlxxxxxx(NULL,
NULL);." Add "sim it (NULL);" as the third line.

8) There will be six subroutine calls in the "main" routine. The first will be
"Z6xxx.xxx 0;". The sixth one will be Z5xxxxxx 0;". The four in the middle will
follow a "Zlxxxxxx 0;" pattern. Delete each of the "Zlxxxxxx 0;" calls.

9) Change the main routine name from "main" to "vhdlmain".
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10) Find every occurrence of the "mksig" string. If the mksig function is assigned
to a variable such as "(*cd).Zxxxxx,=", it is a scalar, so one should proceed with
step 10A for this occurrence. Otherwise, it represents a bit vector, therefore,
proceed with step 10B.

10A) On the line below the mksig string, enter:

(*cd)(PARM1)->name = &(PARM2);

where PARM1 is the Zxxxxxxx string to which mksig is being assigned.
PARM2 is the first parameter that appears in the msignal subroutine
call that will be six lines below.

10B) Four lines above mksig, one can find:
lastsig = sigarr + NUM1 - NUM2;

where NUM1 and NUM2 are integer values. Below that line, enter:
loopcounter = NUM1 - NUM2;

where NUM1 and NUM2 are the same values as shown on the line
above. This gives the index of the bit vector. Again find the "mksig"
string.
Below that line, enter:

tempname = (char*) calloc(sizeof(PARM1)+5, sizeof(char));
sprintf( tempname, "%s(%d)", PARM1, loop counter--);
(*(sigarr-1))->name = tempname;

where PARMI is a 22-character string which will appear 7 lines below
as "Z30000xxx.xxxxxxxxxxx."

/* SIMPLE */
#include "simutl-h" [1]
#include "fn26" [1,2]
#include "/usr/vhdl/shiplib/ron/FN221" [1]
Z300008H struct Z300008H

Figure 4.4 Code Excerpt for Steps 1 and 2.

/* SIMPLE */
Z300008H-struct Z300008H =

Figure 4.5 Edited Code Excerpt for Steps I and 2.
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1* SCONFFA *
#include "simutlkh"
#include "fn26" [2]
static char ZOOOOOGO trcbck11{
60, 60, 82, 79, 78, 62, 62, 83, 95, 67, 79, 78, 70, 95, 70, 65, 0 };
#include "/usr/-vhdl/shiplib/ronIFN2868"[]
#include "/usr/vhdl/ shiplib/ronIFN231"- [3]

Figure 4.6 Code Excerpt for Steps 2 and 3.

/* SCONFFA ~
#include "simutibh"
static char ZOOOOOGO trcbck[]{
60, 60, 82, 79, 78, 62, 62, 83, 95, 67, 79, 78, 70, 95, 70, 65, 0 }

#include "FN2868"
#include 1 FN231!I

Figure 4.7 Edited Code Excerpt for Steps 2 and 3.

{register BOOL cond;
{trace -record-> line num = 18; [4]

if (SQISNEG((&(*cd).ZOOOOOCY 2592)))

m signal (Z3000081H.ZOOOOCY_3248,
(* cd).ZOOOOOCy_3)248- > id,
Z4000001- >ZOOOO1_1 1400);
if (trceqp) f 15]

signame->name = Z300008H.ZOOOOOCY_3 248; [5]
if (trace signal p(signime) = = match) {[5]
(*cd).ZOOOOOCy_324->trp = TRUE; [5]

[5
} [51

trace record->Iine num = 9; [6]
(*-cd).ZOOOOOCY 33)^20 = fnms->ZOOOOOCY_3320:

Figure 4.8 Code Excerpt for Steps 4, 5, and 6.
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{register BOOL cond;

if (SQISNEG((&(*cd).ZJOOOOCY_2592)))

m signal (Z300008H.ZOOOOOCY_3248,
(* cd).ZOOOOOCY_-3248-> id,
Z4000001-> ZOOOOO1_11400);
(*cd).ZOOOOOCY_3320 = frms->ZOOOOOCY_33620;

Figure 4.9 Edited Code Excerpt for Steps 4, 5, and 6.

void
Z50000G00) [7]
f
Z-10000GO(NVLL, NULL); [7]
timero;
close-sigdicto;
if (!elaberror) close-siiz-trace-fileO; [6]
if (full) rptstatso;

Figure 4.10 Code Excerpt for Steps 6 and 7.

void
750000G0()
f
cv = init-cv 0;[71
Z10000GO(NULL, NULL);
sim-it (NULL); [7]
thierO;
close-sigdicto;
if (full) rptstatso;

Figure 4.11 Edited Code Excerpt for Steps 6 and 7.
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maino [9]

Z60000GOQ);
Z1000001O; [8]
Z1000005(); [8]
Z1000007(); [8]
Z10000080); [8]
Z50000GOO);

Figure 4.12 Code Excerpt for Steps 8 and 9.

vhdlmain()

Z60000GOO);
Z50000GOO);

Figure 4.13 Edited Code Excerpt for Steps 8 and 9.

(*cd).ZOOOOOEM_3368 = mksig( 1); [1GA]

(*cd).srs->ZOOOOOEM_3368 = NULL;

m-signal (Z30000EM.Z00000EM-3368, [10A]

Figure 4.14 Code Excerpt for Step 10A.

(*cd).ZOOOOOEi1A_3368 =mksig( 1);
(*cd)(ZOOOOOEM -3368)- >name = &(Z30000EM.ZOOOOOEM_3368); [10A]

( *cd).srcs>ZOOOOOEM-36 =ULL;

m-signal (Z'30000EM.ZOOOOOEM_3368,

Figure 4.15 Edited Code Excerpt for Step 10A.
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{register SRPARR lastsig;

lastsig = sigarr + 8 - 1; [1013]

while (sigarr <= Iastsig){

*sigarr++ = mksig ( 1); [1OB]

*srcarr++ = NULL;}

m-signal (Z30000EM.ZOOOOOEM_4672, [lOB3]

Figure 4.16 Code Excerpt for Step lOB.

{register SRPARR !astsig;

lastsig =sigarr + 8 - 1;
loopZcounter = 8 - 1; [lOB]
while (sigarr < = lastsig){

*sigarr++ = mksig ( 1);
temp name = (char*) calloc;(sizeof(Z30000EM.ZOOOOOEM_4672) +5,

sizeof(char)); [10OB]
sprintf( temp name, "%s(%d)", Z30000EM.ZOOOOOEM_4672,

loop couinter--); [10OB]
((sigarr-1))- >namne = temp name;

*srcarr++ = NULL;}

npsignal (Z30000EM.ZOOOOOEM_4672,

Figure 4.17 Edited Code Excerpt for Step 10OB.
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4.2.3 Compiling on the Hypercube Now that the file is ready to be transferred to the

hypercube, one can use a file tranfer program (FTP) to upload it to the iPSC/2. Along with

this C file, the user must al,' remember to transfer the "FN" header files that are included

into the C file. The "simutl.h" file is already on the hypercube and differs from the simutl.h

in the Intermetrics environment. Therefore, do not port this file.

Once all of the files are in place, one can begin compiling them. Figure 4.18 is an

example of a make file for compiling the ripple-carry adder on the hypercube. One need

only substitute their own circuit's file name for "full-adder" to use this make file for

compilation and linking (assuming all of the files are together in the present directory).

# Makefile for creating/updating VHDL cube applications in C.

all: host node fulladder.o pvsim.o
host: host.o

cc -o host host.o -host
node: node.o fulladder.o pvsim.o

cc -o node node.o fulladder.o pvsim.o -node
full adder.o: full adder.c

cc -c -w fulladder -g full_adder.c -fulladder
pvsim.o: pvsim.c

cc -c -w pvsim -g pvsim.c -pvsim
clean:

rm host node host.o node.o full adder.o pvsim.o

Figure 4.18 Full Adder Makefile.

After the makefile has finished compiling and linking the code, one can execute the

model. First, the desired cube size is allocated to the user by the user entering the appro-

priate "getcube" command. Then the user enters "host" to start the simulation run. Output
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statements appear on the screen showing signal changes at discrete times. After the simula-

tion is finished, the user releases the acquired cube with the "relcube" command. "RunitN"

script files are provided to perform the getcube, host, and relcube steps, where "N" is equal

to the desired cube size. An entry such as "runit8 >& out file" redirects th, output

statements from an eight-node run to an output file with "outfile" as it name.

4.3 Simulation Subroutnes

In order to get the Intermetrics-generated C source code to compile and run on the

hypercube, one of two options has to be exercised for every subroutine call to the

Intermetrics simulator. Either the call has to be deleted from th,. source code, or the

subroutine has to be replaced with a new one in the parallel simulator. The first option

works best for most of the trace calls since keeping the trace routines only adds overhead

for a feature which is not yet needed. However, for most of the others it is more advanta-

Table 4.2 Parallel Simulation Routines.

1 init cv
2 sim-it
3 update
4 get event
5 mksig
6 strbi
7 setkck
8 init
9 padit
10 strsr
11 sqadd
12 posts8
13 rptast
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geous to replace the subroutines with new ones. Of course there are also cases where

altogether new routines are needed to perform the basic functions of discrete-event

simulation. All of the routines that are used are described below and shown in Table 4.2.

The source code is located in a single C file, "pvsim.c," which appears in Appendix A.

4.3.1 Subroutines From Sequential Models Some routines, such as the make-signal

(mksig) routine, need to be done whether the simulator is sequential or parallel. Therefore,

these tasks in parallel are implemented in the same manner as their sequential counterparts.

The greatest advantage to utilizing sequential VHDL subroutines as a model is that it allows

use of all of the data structures in the behavioral models. Creating these routines from

scratch means significantly altering the model generated C source code to interface with any

new data structures. Routines which are based on the sequential simulator are "mksig,"

"strbi," "setkck," and "init."

The "mksig" routine simply allocates space for a signal record and initializes it. "Strbi"

puts behavioral instance records into the Pehavior List for execution. "Setkck" attaches the

signal records of inputs to a behavioral fr..tance to that behavioral instance record. "Init"

executes the behavioral instances before the simulation is started so that all signals will have

a valid value associated with them.

4.3.2 Useless But Necessa ' Subroutines The next class of routines simply return to

the calling program as soon as they are calied. Since there is no productive work being

done, it would speed up program execution by eliminating the need for these routines.
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However, since editing the generated C source is not yet automated, a tradeoff must be

made. Therefore, the time and effort required to find and extract the calls to these routines

is traded for a slightly slower execution time. If one were to write a compiler for the C

source code, it would then be feasible to take the calls, and hence the subroutines, out of

the simulation environment. The subroutines are named "padit," "strsr," "sqadd," "imsignal,"

"rptstats," "readinput," "closesigdict," "rptast," "timer," "rpterr," "pop," "tpop," "push,"

"imreal type," "start nonarray comp," "sched," "rmtrrec," and "m-arraytype."

4.3.3 Original Subroutines The last set of simulator subroutines are the ones that are

required for the simulation to take place. The first is called "initcv." Here, all system

initialization takes place such as partitioning the circuit amongst the nodes in the hypercube,

establishing message dependence between the nodes, and setting the simulation clock to

zero.

The mapping that the user desires is put into the queue.dat file, where each

behavioral instance is assigned to a particular node for the duration of the simulation. An

example of this assignment process was shown in Section 3.8.3. Of course, how the user

maps the circuit to the hypercube directly determines the dependence between the nodes.

The user must put this dependence information into the lp.arcs file (also discussed in Section

3.8.3). It is the "initcv" routine which reads in these files and places their information into

array structures, which are accessed throughout the simulation.

The routine called "simit" is responsible for executing the behavioral instances.

(Recall that the behavioral instances are the Intermetrics-generated models.) For example,
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in simulating AND gate number three, the AND model is the behavioral instance which is

executed with AND gate number three's record as a parameter. The AND routine will

evaluate the values for the input signals attached to AND gate number three. If they are

both '1' then its output will be '1' as well; otherwise, '0' is the output. The output signal is

then posted by a call to the "posts8" routine. The calling routine, such as AND, sends the

output signal's identifier, the AND gate's delay time, and the resultant output value, to the

"post8" routine.

The "posts8" routine posts future events to the simulator by adding records to the

Active Record list (as shown in Section 3.5.1). This routine determines which behavioral

instances are affected by the potential signal change being posted. After the behavioral

instances (BI) are marked, "pOsLt 8 ' locates the node on which the behavioral instance

resides. If the BI is on the same node, "posts8" simply posts the signal change to its own

Active Record list. If the BI resides on another node, "posts8" sends a message to that node

and that node posts the signal change to its Active Record list. Since a signal can serve as

an input to more than one BI (gate), there are times when the signal must be posted on the

present node as well as sent to others. The "posts8" routine is also responsible for putting

the correct signal change time on the Active Record. It accomplishes that by adding the

current simulation time to the delay time of the calling behavioral instance.

"Update" is the where most of the simulation control code resides. This routine is

responsible for finding the next time for the simulation clock. In a sequential simulation, it

accomplishes the task by simply taking the lowest time on the Active Record list as the new

simulation time. In parallel simulation, however, each node must be assured that it will not
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receive a message from any other node for a signal change in the past. Any given node

identifies which nodes might send it messages through the lp.arcs and the queue.dat files.

"Update" compares the lowest next event time on the Active Record list with the safe

times for every other upstream node (upstream meaning one that might send a message).

If it is lower, then the simulation clock is updated, Active Records for the new simulation

time are analyzed, and those that qualify are put on the behavior list. If, however, the next

event time on the Active Record list is greater than the safe times for any of the nodes, then

the node must wait for messages from other nodes, so it calls the "get-event" routine.

"Get-event" processes all incoming messages, updating safe times of upstream nodes

whenever it receives a NULL message. It also adds a signal change to the Active Records

when it receives a signal change message. This message-processing action continues until

it is safe to proceed with the lowest next event time in the Active Record List.

Note that a node may receive a signal change message that occurs earlier in the

simulation than 0' current next event. This is precisely why a node is no. allowed to

proceed past the lowest safe time. If such a signal change message is received, the message

is added to the Active Record list, the new low time is set to the new message's event time,

and the safe times are reevaluated. Eventually, the node receives messages which update

all of the safe times past the next event time; thus, deadlock is prevented.

Once the simulation time is safe, all of the Active Record signal values tagged with

that time are evaluated. If the new value equals the old value then the record can be

thrown away without any further processing. This is because propagating a signal value that

has not changed would cause other behavioral instances to execute, with no consequent
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change to their output values, and so on. Thus, VHDL simulations simply consume signal

values that do not change, preventing a lot of useless processing. If there is a change to the

signal value, then the simulator updates the signal value in memory, prints an output

statement to document the signal transition, and assesses the next candidate Active Record

signal.

Once all of the signals are updated, the simulator executes the behavioral instances.

This is done by going through the Active Records for the current simulation time again.

Records that match the simulation time are the signal values that are changing and each

contains the addresses of the behavioral instances which it stimulates. If the behavioral

instance is on the current node, the processor schedules it for execution by placing it on the

Behavior List. Recall that messages are sent out to other nodes, if necessary, in the posts8

routine. Therefore, a signal change that affects behavioral instances on downstream nodes

has already been accounted for.

Once the Behavior List for the current simulation time is complete, the list is ready

for execution. Control is given back to the simit routine and the simulation continues as

described above. Figure 4.19 is a form of psuedocode that recapitulates Nhat was described

above (i.e., the parallel simulation process) for each node. One Lan use the full adder

example in Appendix B to illustrate the parallel algorithm shown in Figure 4.19.
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1 assign a numeric identifier to every signal
2 assign a numeric identifier to every behavioral instance (gate)

and assign it to a node as in the queue.dat file
3 if (my node equals y in a pair (x,y) listed in the lp.arcs file) then
4 assign MAXTIME to safetime[y] to show what nodes will send

messages to my node
5 assign FALSE to waiting[x]
6 endif
7 if (my node equals x in a pair (x,y) listed in the lp.arcs file) then

assign MIN_DELAY to safetime[y]
8 assign TRUE to waiting[y] to identify downstream nodes
9 endif
10 link behavioral instances tc their input signal records
11 initialize all signal values 'r Simulation Time 0
12 schedule all behaviurs on .ny node to execute for time 0

by adding them to, the Behavior List
13 while (Behavior List or Active Records are not empty

or a safe time is less than MAX-TIME) loop
14 while (Behavior List is not empty) loop
15 execute the behavior
16 if (the resultant output signal connects with a behavioral

instance that resides on my node) then
17 post the signal by adding it to my Active Record list with

parameters (output signal record, current simula-
tion time + delay time, new output value based
on current value of inputs)

18 endif
19 if (the resultant output signal connects with a behavioral

instance on another node) then
20 send a message to that node with the parameters (my

node number, output signal record, current
simulation time + delay time, new output value
based on current value of inputs)

21 endif
22 delete behavior from behavior list
23 end loop
24 assign the lowest time on all of the Active Records to LowTime
25 while (a safetime is less than or equal to LowTime) loop
26 receive a message
27 if (it is a NULL message) then
28 update the safe-time for the node that it is from

Figure 4.19 Parallel Simulation Pseudocode.
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29 else
30 add the record to the Active Record list
31 reevaluate LowTime
32 endif
33 end loop
34 assign Low Time to Simulation_Time
35 send the new SimulationTime to all nodes that are waiting[]
36 while (an Active Record has not been analyzed for this

Simulation Time) loop
37 if (Active Record Time matches Simulation Time) then
38 if (new output value = old output value) then
39 delete record from Active Records (throw it away
40 else
41 assign new output value to signal record
42 add any behavioral instance for which this signal

is an input to the Behavior List
43 delete record from Active Records
44 endif
45 endif
46 go to next Active K -nrd
47 end loop
48 end loop
49 send an "All Done" message to all nodes that are waiting[]

Figure 4.19 (continued) Parallel Simulation Pseudocode.

4.4 Concerns for Parallel Sinulation of VHDL

The main issue in a parallel discrete-event simulation is which timing protocol to use.

This research uses a variant on the Chandy-Misra paradigm. Chandy-Misra dictates that a

message will be sent to downstream nodes whenever one of two events occurs. The first is

whenever the simulation time changes so that a downstream node will not be waiting

unnecessarily. The second is when the lowest safe-time changes on a node, the safe time

should be added to the delay time, and that too should be passed along to downstream

nodes. The second rule seres to speed up the simulation if a node has very few events, and
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those are separated by relatively long intervals of simulation time.

The first Chandy-Misra guideline is adhered to for the parallel simulator in that a

NULL message is sent whenever there is a simulation time change. Since the simulation

time can never be greater than the lowest safe time, rule number two is upheld as well.

Nonetheless, one m,y find greater overall speedup for certain circuits if some of the

restrictions are relaxed. For example, since the simulation time of some circuits changes

frequently and in small increments, one may find that most of the NULL messages are

somewhat redundant; providing little advancement for the costly overhead of sending and

receiving a message.

In conventional simulations, a process can simulate up to and including events that

occur at the safe time. However, the nature of a VHDL simulation is such that a node can

only simulate events up .o the lowest safe time. That is because two steps are taken in the

simulation: 1) the signals for that time are updated; and 2) the behavioral instances are

executed. If the second step is taken, one may be executing a behavioral instance which uses

input data from another node. That input signal may have changed at the same simulation

time, but the downstream node has not yet received the message. The resultant output

would therefore be in error. Figure 4.20 shows a portion of a simulated circuit which will

demonstrate this phenomenon.

Suppose the simulation time on node 1 is 95 ns. The current value is 'l' for signal

B, and the next event on the Active Records list is for signal A to go frcm '0' to 'J' at time

100 ns. In accordance with Chandy-Misra, node 0 has sent a NULL message to notify node

1 that no messages will be sent earlier than 100 ns (simulation time + gate delay); hence,
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safetime[0] equals 100. Node 1 calculates its Low-Time to be 100 ns, so it updates its

Simulation Time to 100 ns.

Safe_Time[O] - 100 ns
Sim Time - 95 ns Sim Time - 95 ns

7Node 1/Node 0

.00 '1'

/ \
I \

Next Event N A - // Nxt Event
A<-'1'at 00 ns B<- 'atl10ns

Figure 4.20 Example Circuit for Parallel Simulation.

If conventional simulation guidelines are followed, a no'O can simulate any event that

occurs at the SimulationTime. So the value of signal A is changed to 'I' and the AND gate

is scheduled to simulate. Since the Active Records list is now empty, the AND gate is

executed. Its current inputs are both '1' so the resultant output, C, is calculated to be a '1'

at 103 ns (assuming a gate de!ay of 3 ns). The output signal change is posted into the Active

Record list.

The new LowTime is 103 ns, but safetime[0] is still 100 ns, so ncde I must wait for

a message from node 0 to update the safetime before proceeding. Instead of sending a

NULL message, node 0 sends a signal change message for signal B going from 'Y to '0' at

100 ns. 100 ns becomes the new LowTime, signal B is updated to '0', and the AND gate
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is executed again. Signal C is posted for the value '0' and the time 103 ns onto the Active

Records list.
When the Simation Time on node 1 reaches 103 ns, the simulator prints that signal

C is changing from '0' to '1' at 103 ns, followed by another line that shows signal C is

changing from '1' to '0' at 103 ns. Any gates that use signal C for input are now simulated

,s.ng the correct value of '0' for signal C and the simulation continues correctly. Since the

initial change to C was calculated with incorrect inputs at time 100 ns, the simulation records

an errant signal change for C. That one print statement is the only flag the user will see that

indicates a bug in the simulation.

To avoid this unfortunate series of circumstances, one solution is only to simulate u2

to the lowest safetime. This guarantees, as is Chandy and Misra's intention, that a node

does not process an event using invalid data. An alternative solution is to scan the Active

Records list before any signals are updated to see if there are two occurrences of any signal

change which conflict with each other. However, due to the way that Intermetrics inserts

and removes the Active Records. which is the model for this research, the records .are not

ordered as they are inserted. Thus, for a list of length n, the node needs to traverse the list

twice every time the simulation time is updated. This is at least equal to the number of

discrete-event times as we have on the node -- this overhead is unacceptable. Therefore,

it is a significantly better solution to sit idle and wait for a message which %,ill increment the

safe time.

Perhaps, in the future, Intermetrics' model can be put aside and the data structures

handled a little more efficiently. In running large. complex simulations in parallel, as is the
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goal, efficiency is a priority. For right now, however, the model does work -- perhaps not

as-well as it might -- but it does work.

4.5 Mapping to the iPSC/2

Circuit partitioning must be flexible so that different mappings may be tried for

various sizes of hypercubes. Utilizing the "queueN.dat" files (where "N" is equal to the

desired number of nodes) as described in Section 3.8.3, the user is able to set up and save

the-best-performance mapping for each cube size. Note that no recompilation is necessary -

- the simulator reads in the appropriate queue.dat file during the simulation run and maps

the behavioral instances appropriately.

In order to perform any type of mapping using the queue.dat file, one must first know

how many behavioral instances there are and which is connected to which. This ib set up

within the Intermetrics' generated C code. As such, it is not readily available to the user.

To make retrieving this information easier, a switch within pvsim.c is set which prints

out information for mapping the circuit. The switch is called "MAPPING." Set both this

value and the value for "OUTPUT" to "1", recompile pvsim.c, and run the simulation on one

node. Along with the regular output statements, the user sees when a behavioral instance

is executing and the subsequent behavioral instances the executing BI affects. Figure 4.21

shows an example.

Figure 4.21's output shows that behavioral instance O's output is an input for

behavioral instance 4. Likewise, behavioral instance l's output signal is an input signal for

behavioral instances 2 and 3. Since there is no BI posted after behavioral instance 3
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executes, that indicates that BI 3's output is a system output. Now that the dependencies

between BIs is known, mapping the circuit is easier.

0->Executing behavior number 0.
0-> Add behav 4 to my list (node 0) for time 3000000
0->Executing behavior number 1.
0-> Add behav 2 to my list (node 0) for time 3000000
0-> Add behav 3 to my list (node 0) for time 3000000
0->Executing behavior number 2.
0-> Add behav 4 to my list (node 0) for time 3000000
0->Executing behavior number 3.
0->Executing behavior number 4.

Figure 4.21 MAPPING Output Example.

The approach used for mapping an application to the hypercube is to map it to eight

nodes first (the largest cube size available at AFIT). Using trial-and-error, one can identify

the mapping which gives the fastest simulation run time. The user translates the mapping

to four nodes by combining what was mapped on every two nodes onto a single node. For

example, BIs mapped to nodes 0 and 1 for the 8-node run are mapped to node 0 for the ,-

node run. BIs mapped to nodes 2 and 3 are mapped to node 1 for the ,-node run, and so

on.

Scaling a simulation up to a larger cube size is not as easy. It is clear that one should

allocate the behavioral instances on a single node to two nodes on the larger cube. But

there is no simple formula for identifying which behavioral instances to map to which node.

The user can only bear in mind general rules-of-thumb, such as avoiding unnecessary

communication between nodes, balancing the computation that occurs on each node, and

avoiding feedback loops where possible.
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4.6 Summary

This chapter has shown how to implement the design given in Chapter 3. The full

adder example in Appendix B takes the reader through each step in this chapter in detail.

The reader must be concerned with issues such as modeling the sequential behavior, how

to map that behavior for parallel execution, timing and synchronization paradigms, and a

host of others. Once these issues are worked out, simulation of larger circuits is simply a

matter of expanding the experience base. The next chapter introduces test cases that are

simply expansions of the full adder example used up to this point.
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V Test Cases

-5.1 Introduction

The test cases presented in this chapter were chosen based on three criteria. First,

they each are relatively simple to simulate in sequential VHDL and one starts with simple

models when testing new concepts. Second, although simple, they each are complex enough

to have a structural design which goes down to the gate level; thus, a structural architecture

can be parallelized. Finally, each provides a different number of behavioral instances for

simulation. The following sections point out each test case's redeeming qualities in detail.

5.2 The Cany-Save Adder

As mentioned in the previous chapter, when mapping an application to the iPSC/2

hypercube, one tries to maximize the computation to communication ratio on each node.

Finding the rare application in which the communication costs are zero means finding the

perfect application for the hypercube. Such is the case with the carry-save adder.

Because the carry-save adders is a simple building block for larger circuits such as

multipliers, it is of little interest in and of itself. For the purpose of this research, however,

it not only provides an eAcellent test case for the hypercube, but it is also the first step to

creating much larger VHDL simulations for parallel execution.

As shown in Figure 3.23, a carry-save adder is made up of eight separate and

independent full adders. Since there are no signal connections between the full adders,

there is no communication needed between the nodes. Consequently, communication time

is zero and the computation to communication ratio is maximized.
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5.3 The Ripple-Cany Adder

The ripple-carry adder, shown in Figure 3.21 is similar to the carry-save adder in that

it also is made up of eight full adders. Likewise, the circuit is partitioned in the same

manner, putting 8/p full adders per node for p nodes. But the ripple-carry adder piopagates

its carry from one full adder to the next. This signal propagation mean- communication is

necessary between the nodes. Therefore, the ripple-carry adder is not expected to gain as

much speedup as the number of nodes are increased, as the carry-save adder-

5.4 The Cany-Lookahead Adder

The most intriguing circuit to partition is the carry-lookahead circuit, shown in Figure

3.22. This is due not only to the increased number of behavioral instances (76 versus 60),

but also to the difference in delay times. Standard two-input gates are set to a delay of 3

ns. But the carry-lookahead adder contains three-, four-, and five-input ANDand OR gates,

which have a delay of 5 ns. Therefore, the timing throughout the circuit is much more

complex and dynamic.

The carry-lookahead adder was initially partitioned as were the other two adders, by

allocating a full adder to each node (as shown in Figure 5.1). After simulating this circuit

several times, a noticable discrepancy between the completion times for the first and last

nodes is evident. Table 5.1 shows one such set of execution times (in milliseconds) for the

mapping of Figure 5.1.

By partitioning the circuit by trial and error, one can often find a better way to

balance the workload. Since it is behavioral instances that are moved to other proce..sors,
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and since each behavioral instance is representative of a gate in the circuit, one can use the

circuit diagram to reallocate gates to processors. As Section 3.8.2 pointed out, a constraint

which must be remembered is to avoid unnecessdry feedback between nudes. Such feedback

Y(3) X(3)! Y(2) X(2) Y(1) X(1) Y(O) X(O)

....I ..... ..i1.y Li! C!1

LU I

......... . .....
Z(3) Z(2) Z(1) Z(O)

Node 3 Node 2 Node 1 Node 0

Figure 5.1 Approach 1 for Carry-Lookahead Partitioning.

Table 5.1 Typical Execution Times for Approach 1.

Node 0 reports total time on node = 1843
Node 1 reports total time on node = 2801
Node 2 reports total time on node = 3882
Node 3 reports total time on node = 5614
Node 4 reports total time on node = 5627
Node 5 reports total time on node = 5640
Node 6 reports total time on node = 5655
Node 7 reports total time on node = 5837
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only adds overhead for the processors. One may be able to get a more balanced system by

using feedback, but overall goal for this thesis is a faster simulation time.

Since the architecture of the 8-bit carry-lookahead adder consists of two 4-bit carry-

lookahead adders, these are better kept as separate entities. The small time difference

between node 3 to node 7 confirms that such a decision is reasonable. Therefore, all

mappings that are discussed below for nodes 0 through 3 are also applied to nodes 4 through

7.

It is apparent that node 0 could handle more computation, the 3-input AND gate on

node 1 is moved to node 0. To avoid feedback, though, every gate which generates a signal

that the 3-input AND gate uses for input must also be moved. That means that the first OR

gate of the second full adder i transferred from node 1 to node 0. That requires that gate's

inputs, X(1) ard Y(1), to execute on node 0. Rather than having the behavioral instances

for X(1) and Y(1) execute or. two processors, it is better to move the gates to which X(1)

and Y(1) are attached to node 0, and pass instead signal changes from these latter gates.

Table 5.2 Typical Execution Times for Approach 2.

Node 0 reports total time on node = 2089
Node 1 reports total time on node = 3388
Node 2 reports total time on node = 4017
Node 3 reports total time on node = 5330
Node 4 reports total time on node = 5345
Node 5 reports total time on node = 5433
Node 6 reports total time on node = 5451
Node 7 reports total time on node = 5523

Similar changes a;e made for the entire 4-bit carry-lookahead circuit. The result is
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the mapping depicted in Figure 5.2. Table 5.2 provides example execution times for the

-mapping of Figure 5.2.

Y(3) X(3) Y(2) X(2) Y(1) X(1) Y(O) X(O)

? ' '".......... . ......... :....... ........ ......... .... . ..............

_CIN

cour.

I I- I

IFI

Z(3) Z(2) Z(1) Z(O)

Node 3 Node 2" Node 1 Node 0

Figure 5.2 Approach 2 for Carry-Lc,;kahead Partitioning.

Table 5.3 Typical Execution Times for Approach 3.

Node 0 reports total time on node = 2375
Node I reports total time on node = 3321
Node 2 reports total time on node = 3541
Node 3 reports total time on node = 4532
Node 4 reports total time on node = 4555
Node 5 reports total time on node = 4725
Node 6 reports total time on node = 4743
Node 7 reports total time on node = 4788
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This certainly seems better since node 0 is busier and the total time for the simulation

run is faster. To continue this approach of putting more gates (i.e. more computation lod)

on the upstream processors, a few more gates are moved. The next mappiig, called

approach 3, is given in Figure 5.3 with example results shown in Table 5.3.

Y(3) X(3) Y(2) X(2) Y(1) X(1) Y(O) X(O)

S I "+-,! I I I I I ~ GIN

GO~UT~I..... ........ i
ILI

.. ..... ... ......

Z(3) :Z(2) z(1) Z(O)
Node 3 Node . Node 1 Node 0

Figure 5.3 Approach 3 for Carry-Lookahead Partitioning.

Although the circuit is more balanced, the execution times between nodes 2 and 3 s till

seems larbe. To avoid drastic changes and prevent losing the gains made thus far, onl the

3-input AND gate is moved from node 3 to node 2. Since the inputs for the 3-input AND

gate are on nodes 0, 1, and 2, no other gates need to be moved. The result is the circuit

shown in Figure 5.4 with representative execution times shown in Table 5.4.
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Y(3) X(3) Y(2) X(2) Y(1) X(1) Y(O) X(O)

..... .... ........ ................. . .I

CIN

............ z3)z2zl)zo

Node 3 Node 2 Node I Node 0

Figure 5.4 Approach 4 for Carry-Lookahead Partitioning.

'Table 5.4 Typical Execution Times for Approach 4.

Node 0 reports total time on node =2356
Node 1 reports total time on node =3344
Node 2 reports total time on node 3537
Node 3 reports total time on node 4610
Node 4 reports total time on node = 4639
Node 5 reports total time on node = 4780
Node 6 reports total time on node = 4800
Node 7 reports total time on node = 4814

Thirty samples were taken for each mapping strategy and the results are displayed

in Table 5.5. Of the four different mappings for the carry-lookahead adder, the fastest

execution time is produced by approach three, although approach four is close (within one
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standard deviation).

Table 5.5 Statistics for the Four Approaches.

Approach Mean Std. Dev. Max Min
1 5810 285.248 7091 5597
2 5561 109.617 5932 5433
3 4791 89.214 5032 4652
4 4819 58.120 4900 4706

The explanation for this phenomena is due to basic VHDL algorithm: signals are

updated, then any behavioral instances for which the signals are inputs are executed. By

recalling that signals are the main dependency in the simulation, it is evident that active

signals on a node should be minimized if possible. "Active signals" on a node are those

-which are either an input to a behavioral instance located on the node, or a system output.

These are the signals that are entered on the Active Records list. 'Total signals" on a node

also include signals that are created on the node, but are then sent to another node as input

to-a behavioral instance there. Table 5.6 shows a comparison of these values for the four

approaches discussed above.

Analyzing Table 5.6, one can see that active signals on any given node are minimized

with approaches 3 and 4. One reason for approach 3s better performance is that node 2

is required to track 2 fewer signals. It is also evident that the number of gates decrease by

one-third as the pipeline is traversed with approach 3 (from 12 to 8 to 6 to 4). Perhaps it

is this phenomena which produces better throughput.

While the total number of active signals in the first two approaches is less than the
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Table 5.6 Comparison of the Four Approaches.

Approach Node Gates Total Signals Active Signals
1 0 6 9 7
1 1 7 13 12
1 2 8 16 15
1 3 9 17 17

2 0 10 15 11
2 1 8 17 13
2 2 6 13 11
2 3 6 16 16

3 0 12 17 14
3 1 8 16 15
3 2 6 12 11
3 3 4 12 12

4 0 12 17 14
4 1 8 16 15
4 2 7 12 13
4 3 3 12 12

number in approaches 3 and 4. they are less balanced -- and balance is the key. Further,

since changes are propagated through the system, it is better to put a slightl) heaier load

at the front of the system than at the end. Tring to reduce the number of gates by one-

third as one maps a circuit to the hypercube is a Aimpler paradigm than calculating and

minimizing the number f active signals on a node. But, the latter approach is more

applicable to a wider range of simulations.

5.5 Logical Processes

Although each behaioral instance has its own independent behavior. they can also

be grouped into a larger entity called a "logical process." A logical prtcess (LP), as usel in
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the parallel VHDL simulator, is simply a group of gates. For example, when the ripple-carry

adder is mapped to eight nodes, each full adder is considered a logical process. If, however,

one maps the circuit to four nodes, a logical process then consists of two full adjers. A

logical process is informally defined, therefore, as all of the behavioral instances that reside

on any given physical node at a given time.

Logical processes are a concern because, based on the necessary communication

between the LPs, a node can tell from which nodes it may receive messages. Without this

knowledge, a node finishes processing when its Active Records are exhausted and quits.

Then if it receives a message from an upstream node that is still active, events that are

supposed to occur, do not. Thus, the simulation is in error.

Therefore, the lpN.arcs file (where "N" is the number of active nodes) is used to

depict which LPs are dependent upon which. (The lp.arcs file is more fully discussed in

Section 3.8.3.) Knowledge of the interdependence of logical processes is required feature

execution under the Chandy-Misra paradigm.

5.6 Output From the Parallel Simulator

In Intermetrics' sequential system the circuit is simulated and the signal changes are

written to an internal output file. In order to view the output, one must use their report

generator, which analyzes the internal file and prints a report listing changes to the signal

values for which the user asked. The report shows bit vectors and scalars on the x-axis in

a neat, columnar fashion with increasing time on the y-axis. A portion of one such report

for the ripple-carry adder is shown in Figure 5.5.
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OCT-05-1991 20:34:47 VHDL Report Generator PAGE 7

TIME ............................. SIGNAL NAMES ............................

(NS) CIN X(7 DOWNTO 0) Y(7 DOWNTO 0) COUT Z(7 DCWNTO 0)

600 '0' "01010101" "01001100"
603 "01011111"
606 '0'
609 "0010C01"
615 "10000001"
621 "10100001"
630 'i' "10101010" "10110011"
633 "10100000"
636 '1'
639 "01101110"
645 "01111110"
651 "01011110"

Figure 5.5 Sample of Intermetrics' Report.

Note that the report excerpt is for simulation times 600 ns to 651 ns. It shows the

results from a VHDL simulation of a ripple-carry adder (Figure 3.19). No entry for a signal

at a particular time means that there was no change for that signal. Figure 5.5 iq n

representation of CIN + X + Y = COUT + Z. Notice how the carry from each full adder

"ripples" to the next adder every 3 ns. One can also see that it takes 21 ns from when the

inputs are applied to the ripple-carry adder, to when the correct answer is available. This

is the "circuit delay" for the full adder and is dependent on the delay times of the gates of

which it is composed.

The "X(7 DOWNTO 0)" column shows the bit vector "X" where the first bit is called

"X(7)", the next bit is called "X(6)", and so on. "CIN" is the same magnitude as X(O) and

Y(0), that is 20. "COUT" has the magnitude of 2'. The equivalent decimal value given by

X(n) is its shown binary value ('1' or '0') multiplied by 2". Thus, "01010101" has a decimal

equivalent of:
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0*27 (= 0)
+ 1*26 ( 64)
+ 0"25 (= 0)
+ 1*24 (= 16)
+ 0*23 (= 0)
+ 1"2 (= 4)
+ 0*21 (= 0)
+ 1 *20 (= 1) = 85

Unfortunately, the parallel simulator does not yet have a report generator as nice as

Int.rmetrics'. Currently, whenever a signal change occurs, a corresponding statement is

produced to the screen. One can use the Unix redirect command (">&") to send the screen

output to a file (strongly suggested). If the user is just interested in how much time was

used on each node, the output statements can be turned off by editing the pvsim.c file,

changing the "1" in the line "#define OUTPUT 1" to "0", and recompiling using the "make"

command.

0---> At time 600 ns, Signal 'Y(0)' is changing from 1 to 0.
3--> At time 570 ns, Signal 'X(3)' is changing from 0 to 1.
4--> At time 555 ns, Signal 'Z(4)' is changing from 1 to 0.
5---> At time 540 ns, Signal IX(5)' is changing from 1 to 0.
6---> At time 540 ns, Signal 'X(6)' is changing from 0 to 1.
1--> At time 576 ns, Signal 'COUT 0' is changing from 0 to 1.
2--> At time 576 ns, Signal 'COUT-I' is changing from 0 to 1.
7---> At time 459 ns, Signal 'Z(7)' is changing from 1 to 0.
0---> At time 600 ns, Signal 'X(0)' is changing from 0 to 1.
3---> At time 576 ns, Signal 'COUT 2' is changing from I to 0.
4---> At time 555 ns, Signal 'COUT-2' is changing from 0 to 1.
5---> At time 543 ns, Signal 'COUT-I' is changing from 1 to 0.
6---> At time 543 ns, Signal 'COUT-I' is changing from 1 to 0.
1-> At time 579 ns, Signal 'Z(1)' is changing from 0 to 1.
2---> At time 579 ns, Signal 'Z(2)' is changing from 0 to 1.
7--> At time 480 ns, Signal 'Y(7)' is changing from 1 to 0.
0--> At time 600 ns, Signal 'GIN' is changing from 1 to 0.
3---> At time 579 ns, Signal 'Z(3)' is changing from 0 to 1.
4---> At time 570 ns, Signal 'Y(4)' is changing from 0 to 1.
5---> At time 558 ns, Signal 'COUT 4' is changing from 0 to 1.
6---> At time 546 ns, Signal 'COUT-5 is changing from 1 to 0.
I---> At time 600 ns, Signal 'Y(1)T is changing from I to 0.
2---> At time 600 ns, Signal 'Y(2)' is changing from 0 to 1.
7---> At time 480 ns, Signal 'X(7)' is changing from 1 to 0.
0---> At time 603 ns, Signal 'Z(0)' is changing from 0 to 1.

Figure 5.6 Sample Output from an Eight Node Run.
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As far as the format of the output from the parallel compiler is concerned, there are

four major pieces of information. The first is the node which produced the statement; this

is read as the very first character on the line. For example, any line that starts with "0--->"

is printed by node 0. Second is the time which is shown in Figure 5.6 in nanoseconds.

Third, the signal name is given, such as "Y(0)." Finally, the simulator also shows the change

on the signal (e.g., "from 1 to 0").

The output from two or more nodes can be very confusing to read, as shown in

Figure 5.6, since the nodes are usually executing at different simulation times. One can,

however, use this output to evaluate how far along in the simulation a particular node may

be. By noting each node's relative position in the pipeline, one can assess how mrny test

vectors must be entered into the circuit to make parallel execution worthwhile.

To order the output file, one can utilize the Unix sort utility, with a "+ 1" option,

redirected to another file. The "+1" option sorts on the event times rather than on the

nodes. Figure 5.7 shows the more orderly output after sorting.

Figure 5.5 and 5.7 provide the same information, however, Intermetrics condenses the

information into a better format. In any event, one can track the events of the simulation

from either format. For example, Figure 5.7 shows CIN going to '1' at 630 ns; so does

Intermetrics' report in Figure 5.5. Figure 5.7 shows Z(1), Z(2), Z(3), and Z(6) going to '0'

and Z(7) going to '1' at 609 ns; so does Intermetrics report in Figure 5.5. Therefore, the

output from the parallel simulator can be compared to the output from Intermetrics'

sequential simulator to verify consistent results.

One can also use the output from either Figure 5.6 or Figure 5.7 to extract the parti-
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cular events that occurred on a specific node. For example, using the Unix grep function

to extract all strings with a "4--->" in it will extract all events that occurred on node 4. One

can also extract specific signals or simulation times, such as "Z(2)" or "600 ns", if desired.

0---> At time 600 ns, Signal 'CIN' is changing from 1 to 0.
0---> At time 600 ns, Signal 'X(O)' is changing from 0 to 1.
1---> At time 600 ns, Signal 'X(l)' is changing from 1 to 0.
2---> At time 600 ns, Signal 'X(2) is changing from 0 to 1.
3---> At time 600 ns, Signal 'X(3)' is changing from 1 to 0.
4---> At time 600 ns, Signal 'X(4)' is changing from 0 to 1.
5---> At time 600 ns, Signal 'X(5)' is changing from 1 to 0.
6---> At time 600 ns, Signal 'X(6)' is changing from 0 to 1.
7---> At time 600 ns, Signal 'X(7): is changing from 1 to 0.
0---> At time 600 ns, Signal 'Y(O) is changing from 1 to 0.
1---> At time 600 ns, Signal 'Y(l)' is changing from 1 to 0.
2---> At time 600 ns, Signal 'Y(2)' is changing from 0 to 1.
3--> At time 600 ns, Signal 'Y(3)' is changing from 0 to 1.
4--> At time 600 ns, Signal 'Y(4)' is changing from 1 to 0.
5---> At time 600 ns, Signal 'Y(5)' is changing from 1 to 0.
6---> At time 600 ns, Signal 'Y(6)' is changing from 0 to 1.
7---> At time 600 ns, Signal 'Y(7)' is changing from 1 to 0.
1---> At time 603 ns, Signal 'COUT 1' is changing from 0 to 1.
2---> At time 603 ns, Signal 'COUT-l' is changing from 0 to 1.
5---> At time 603 ns, Signal 'COUT-l' is changing from 0 to 1.
7---> At time 603 ns, Signal 'COUT-1' is changing from 0 to 1.
0---> At time 603 ns, Signal 'COUT-2' is changing from 1 to 0.
0---> At time 603 ns, Signal 'Z(O)7 is changing from 0 to 1.
7---> At time 606 ns, Signal 'COUT' is changing from 1 to 0.
1--> At time 606 ns, Signal 'COUT 0' is changing from 1 to 0.
2---> At time 606 ns, Signal 'COUT-l' is changing from 1 to 0.
3---> At time 606 ns, Signal 'COUT-2' is changing from 0 to 1.
6--> At time 606 ns, Signal 'COUT-5' is changing from 1 to 0.
7---> At time 606 ns, Signal 'COUT-6' is changing from 0 to 1.
3---> At time 609 ns, Signal 'COUT-2' is changing from I to 0.
I---> At time 609 ns, Signal 'Z(1) " is changing from 1 to 0.
2---> At time 609 ns, Signal 'Z(2)' is changing from I to 0.
3---> At time 609 ns, Signal 'Z(3)' is changing from I to 0.
6---> At time 609 ns, Signal 'Z(6)' is changing from 1 to 0.
7---> At time 609 ns, Signal 'Z(7)' is changing from 0 to 1.
4---> At time 612 ns, Signal 'COUT 3' is changing from 0 to 1.
4---> At time 615 ns, Signal 'COUT-2' is changing from 0 to 1.
4---> At time 615 ns, Signal 'Z(4)T is changing from 1 to 0.
5---> At time 621 ns, Signal 'Z(5)' is changing from 0 to 1.
0---> At time 630 ns, Signal 'CIN' is changing from 0 to 1.

Figure 5.7 Sample Output from an Eight Node Run After Sorting.

5-14



5.7 Verification

The output must be verified to assure the user that the simulator is providing the

correct result for a given set of inputs. Since the test cases are simulated down to the gate

level, one only need verify that the gates are acting as expected to be assured of correct

behavior throughout the circuit. For example, since the carry-save adder is made up of eight

full adders, eight test cases can be run simultaneously on the eight full adders of the carry-

save circuit.

This trait enables one to test every possible set of inputs for a full add,:r with only

two sets of vectors. Since a tull adder has three inputs and each input can take on two

values ('0' or '1'), there are 2', or 8 possible input combinations. Setting X to "01010101,"

Y to "01001100," and CIN to "0" covers input combinations 000, 010, 011, 100, 101, and 110.

Toggling every bit of X, Y, and CIN covers the last two combinations, 001 and 111.

This same testing strategy is used for each of the three test cases. For the carry-save

adder, testing was riot really necessary since it is made up of the same full adder structuie

as the ripple-carry adder. Nonetheless, the vectors for X, Y, and Z, provide sufficient

coverage to test all eight possible input combinations again.

The carry-lookahead adder consists of full adders and behavioral models for three-,

four-, and five-input AND and OR gates. It is senseless to test the full adders again.

Therefore, verifying that the models for the new AND and OR gates is the only pertinent

concern for the carry-lookahead adder. Since these gates are behavioral models, the inputs

are associative; that is, if one input has an effect on the gate, then any t. those inputs is sure

to have the same effect. Therefore, all that is needed for verification on these gates is to
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make sure that they can output '1' and a '0' at the appropriate time for the proper inputs.

Toggling the test vectors "01010101" for X, "01001100" for Y, and '1' for CIN will

toggle all of the OR gates. To test the AND gates, all that is needed is to set every bit of

X, Y, and CIN to '1'. After the individual delays, each of the AND gates will have a '1' as

its output. For a four-bit carry-lookahead adder, changing CJN, Y(0), X(0), Y(1), or '(1)

to '0', or changing both X(2) and Y(2), or X(3) and Y(3), to '0' causes at least one .AND

gate to go to '0'. Thus, several test runs have been completed to verify correct behavior.

As each of the test runs are completed, the resultant vectors are checked to make

sure that they correspond to the expected output. Once a behavioral model is verified for

a component, any circuit that is made up of those components can be verified as well.

Because structural archi. .ctures, which are composed of behavioral models, are used for the

three test cases, redundant testing can be avoided.

A final point is that although verifying correct output is essential, the intention of this

research is to show the feasibility of parallel simulation. Therefore, for timing purposes,

inputs to each test case are simply toggled. Since the adders were already verified by the

test vectors discussed above, heavy behavioral instance activity became the objective -- not

verification. That activity is best achieved by toggling each bit, rather than just one or two.

5.8 Summary

Applying these test cases to the parallel shnulator requires several steps. First, one

must account for executing the simulation on the hypercube, which involves many concerns.

Thes include how to map behax ioral instances on the nodes, communication overhead during
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the simulatLan, and implementing the Chandy-Misra paradiAgm. An efficient implementation

of the Chandy-Misra algorithm requires using NULL messages to full advantage without

wasting too much time processing irrelevant NULL messages. Finally, output must be

produced for the user. This output enables the user to vcj: .. a the results from the

parallel simulator match the results from Irtermetrics' si.i c,r.

As stated throughout this chapter, performance of the p, -allel simulator depends on

several different factors. These include application, par,' .rchi'.:cture, mapping.

communication, computational workload, simulation paradigm, aid others. Chapter 6 shows

how some of these factors are manipulated and reports the results.
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VI. Experimentation and Analysis

6.1 Introduction

Ru. iing a parailei VHDL simulation offers se, Lral choices for the user; all accompa-

nied by both advantages and disadvantages. These choices include the number of nodes to

use, how to partition the ci -.uit, communication issues, disrete-event simulation paradigms,

and considerations about both grain size and load balaalcing. Most of these issues ha, been

addres: .d in the previous chapters. In this chapte_, differences in choosing betwee.. these

-issues are compared, the tradeoffs involved are examined, and the work that has been done

thus far is analyzed. Finally, directions for future research ai e submitted for review.

6.2 Experimental Options and Constraints

Currently, the most limiting factor for futur- researchers is the number of VHDL

models available for parallel execution. Therefore, working with only the simulations thdU

are presently out there severely limits the avenues left to be explored. One can vary the

number of nodes, vary the computation to communication ratio, change the number of input

vectors, or insert spin lo,,ps to simulate increased complexity. These viriations were tried

and the findings are presented in the next section.

By running the simulation en a hypercube, one is forced to use message passing in

order to communicate a global vdriable change frcm one logical process to another.

Because this overhead is so costly, these message channels mus'. be used sparingly. That

n eans that the grain size of the simulation (i.e., how much computation there is to do) must
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be quite large. Otherwise, there is no point in porting the simulation to a multiprocessor.

However, since the point of trying to parallelize these simulations is to encourage others to

follow with much larger and much more complex simulations, the hypercube may prove to

be an excellent choice for the long term.

6.3 Comparisons

Although the real thrust of this research is to show that parallel VHDL smulations

are realizable, it is important for the reader to see the benefits and disadvantages of parallel

execution. Thirty test runs were timed for each data r.oint that appears on the graphs in this

chapter and the average of the tests is used as the date point. To insure independen:e from

the host processor and operating system, output was turned off unless stated otherwise. The

execution time tor a multi-node run is regarded as the longest execution tilre on any node.

Table 6.1 Statistics on Test Cases.

Adder Nodes Mean Std. Dev. Min Max
RCA 1 4796 24.800 4762 4881
RCA 2 2427 69.290 2394 2772
RCA 4 2001 9.030 1982 2029
RCA 8 2200 7.214 2184 2214
CLA 1 10250 19.391 10220 10323
CLA 2 6725 14.292 6707 6772
CLA ,f 3892 13.283 3864 3933
CLA 8 4338 53.422 4272 4528
CSA 1 4233 14.566 4208 4277
CS\ 2 1932 68.958 1905 2288
CSA 4 1303 27.050 1286 1420
CSA 8 1426 17.1,45 1380 1442
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What follows is a summary of results from tests run on the ripple-carry adder (RCA), the

carry-lookahead adder (CLA), and the carry-save adder (CSA) test cases.

Table 6.1 shows the statistics that were gathered for 64 test vectors being fed into

each circuit and Figure 6.1 shows how the three test cases match up against each other.

Obviously, the carry-lookahead adder is the most taxing in terms of work to be done.

However, it also receives the most benefit, in terms of speedup, from distributed processing,

as displayed by Figure 6.2.

Time(ms) Application Comparison
Adder11000

10000 
-,Ripple-Carry

9000- ----- Carry-Lookahead

8000 Carry-Save

7000"

6000-

5000 N'

-------------------4000

3000

20001

1000

1 2 4 8
Number of Nodes

Figure 6.1 Comparison of Applications.

Notice the increase in processing time for the carry-lookahead adder when going from
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four nodes to eight nodes in Figure 6.1. This occurs when the computation to

communication ratio is decreased, allowing one to deduce that the cafry-lookahead adder

suffers from too much communication when mapped to eight nodes. Figure 6.2 gives

another perspective, showing that speedup is decreased when going from four nodes to eight.

A similar effect is appearant in the carry-save adder and ripple-carry adder data. Since

there is no communication in the carry-save circuit, one can deduce that the slight increase

in execution time is due to the overhead of the host system dealing with eight nodes instead

of four (e.g. reading in the lp.arcs and clueue.dat files).

Speedup Speedup Over 1 Node
3.4-

Adder3.2-

3 - Ripple-Carry

2.8 Carry-Lookahead

2.6 -- Carry-Save2 .4 -"" 
"

2.2-

1.8 /

1.6 -

1.4-
1.2 -

0.8
1 2 4 8

Numlt.=r of Nodes

Figure 6.2 Speedup of Applications.

6-4



Also of interest is the parallel curves in Figure 6.1 that are plotted for the ripple-carry

and carry-save adders. Recall that they are both made up of eight full adders. The ripple-

carry adder suffers from the communication costs involved. Accordingly, Figure 6.2 shows

speedup for the carry-save adder is greater than that for the ripple-carry adder as the nodes

are increased. However, the carry-save adder contains more behavioral instances since three

vectors are fed into the full adders instead of just two, as in the ripple-carry adder. In

summary, both can be parallelized to a point, but after mapped onto four nodes, any further

partitioning is not worth the effort.

In many parallel applications, speedup is achieved by pipelining the data through the

processors. Once all of the processors have a portion of the problem to work on, parallel

processing begins to pay off. If the processors can be kept busy long enough to offset the

overhead of both filling the pipeline and the communication costs, then the user s.iould see

a corresponding speedup.

Table 6.2 provides statistics for running the ripple-carry adder with two sets of

vectors. Figure 6.3 shows the corresponding plots for average execution time. The top line

in the graph depicts 64 test vectors being put through the ripple-carry adder. The bottom

line represents 32 test vectors. The graph clearly shows that increasing the number of test

vectors for a VHDL simulation makes that simulation a more likely candidate for parallel

processing. Also, in the case of pipeline-type simulations, the user must be sure to use

enough test vectors to fill the pipeline. Otherwise, parallel simulation is not efficient. If the

simulation can be correctly mapped to the architecture, payoff, in the form of speedup,

occurs.
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Table 6.2 Statistics on Test Vector Test Cases.

Vectors Nodes Mean Std. Dev. Min Max
64 1 4796 24.800 4762 4881
64 2 2427 69.290 2394 2772
64 4 2001 9.030 1982 2029
64 8 2200 7.214 2184 2214
32 1 1695 37.864 1515 1747
32 2 1076 14.019 1041 1093
32 4 1182 13.594 1129 1211
32 8 1662 46.555 1520 1834

Time(ns) Effect of Test Vector
Workload on RCA

5000
4500# ,#Test Vectors

2500 2

4000
...32

3500.1

3000-

2500-

2000-

1500 ... ..-_, .. ..............-..

1000--

500.,

1 2 4 8
Number of Nodes

Figure 6.3 Comparison of Effect of Test Vectors.

6-6



Speedup Test Vector Speedup
2.8 Over 1 Node
2.6

2.4 # Test Vectors

2.2- 64
------ 32

2-

1.8-
1.6-

1.4-

1.2-

1 "

0.8
1 2 4 8

Number of Nodes

Figure 6.4 Test Vector Effect on Speedup.

Figure 6.4 clearly shows that increasing the number of test vectors in a simulation also

increases the benefits of parallelization. This is important since it is logical to expect to

simulate larger circuits in the future. Testing larger circuits means putting an increased

number of test vectors through the circuit. Figure 6.4 shows that parallel processing is more

than capable of handling such a workload.

The test vector experiment (Figure 6.4) increased the computational workload on

each node slightly. However, the gains from parallel processing become even more dramatic

as the workload is increased by orders of magnitude. This was shown on the hypercube at

AFIT by Sartor in 1990 (Sart).
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Sartor's research at AFIT showed that as the computational workload of a logical

process increases, greater speedup occurs when such applications were mapped to the

hypercube. Test runs with the carry-lookahead adder confirm her results, as shown in

Figures 6.5. The full statistics are contained in Appendix C.

The spin loop is activated whenever a behavioral instance is executed. That way,

althougl the same number of tasks are being assigned as before, these tasks are artificially

being made more intensive. Other experiments can be run by turning the "BUSY" switch

on in pvsim.c, finding the two occurrences of the busy loop by locating the word "busy" in

pvsim.c, and setting the loop value to whatever is desired.

Time (ms) Effects of Spin Loops
120000 on the CLA Spin Loop Value120000-

110000 - 0

100000 100

90000- .. 500

80000 . 1000

70000.
5000

50000 ,0,
40000. 

10,000

20000 ........--- --..................
1000---------------------------------

011
1 2 4 8

Number of Nodes

Figure 6.3 Effect of Spin Loops on CLA.
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Figure 6.6 shows a different perspective of the spin loop experiment. It shows the

speedup that one finds by increasing the workload per behavioral instance. The speedup

occurs when the behavioral instances are distributed to several processors. The line

corresponding to 10,000 loops indicates that even more processors are needed for such a

computational task.

Speedup Speedup Over 1 Node
6 on the CLA Loops

5.5
-0

5- ........ 500
4.5- .2000

.. .......... 1 , 0

3.5-

3-

2.5,

2-

1.5-

1

0.5
1 2 4 8

Number of Nodes

Figure 6.6 Speedup in the CLA From the Spin Loop Effect.

When running an actual simulation, the user is always concerned with the output so

that it can be analyzed and verified. Experiments showed that the overhead involved in

gathering output is quite significant. Figure 6.7 illustrates the cost of redirecting output
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statements to a file. Tests for the ripple-carry adder and the carry-lookahead adder have

the same result.

Time(ms) Overhead Cost With CSA
50000 For Requesting Output
45000

40000 Option

NO Output

--------------------......... - Output
30000

25000

20000

15000 J

10000-
5000-t ""

1 248

Number of Nodes

Figure 6.7 Overhead in Processing Output Statements.

Obviously, there is a great difference in the simulation times with output as compared

to the times without output. The purpose of Figure 6.7 is to remind the reader to find out

how timing was performed before comparing simulation paradigms, architectures, or

applications. Since the hypercube requires so much more time to communicate with the file

server, times with output will be more varied. Therefore, all timing runs throughout this

thesis are done without output. That allows one to infer that time comparisons are
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dependent only on the changed variable, and not to a sometimes busy operating system.

Speedup Speedup Over 1 Node
3.2 For Output Option3.2-

3- Option
2.8
2.6 

NO Output

2.4- Output

2.2
2

1.8

1.6-
1.4

1.2 .........................
1

0.8
1 2 4 8

Number of Nodes

Figure 6.8 Speedup for Output Options.

There is also an effect on speedup if output is turned on. Figure 6.8 indicates that

if the nodes must wait on the host operating system for servicing output statements, almost

all speedup is lost. This indicates that there are two cases in which parallel simulation

feasible (at least for the AFIT iPSC/2). First, parallel simualation is feasible if the

simulation is so large and takes so long to run that host service time is negligible. Second,

parallel simulation is feasible if the operating system is able to process output request as fast

as the nodes can submit them. As 6.8 clearly shows, something must be done so that
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advances in speedup do not suffer because of architecture and operating system limitations.

6.4 Analysis of Results

As shown by the above graphs and by the discussions in Chapters 4 and 5, there are

many ingredients to successfully porting an application from the sequential world to the

parallel. The lessons from the three adder test cases are summarized below. It is assumed

that the reader is intending to run parallel VHDL code on a hypercube-type architecture.

Minimize and balance the number of active signals in a logical process. When

analyzing a circuit, there is a large temptation to allocate gates to a logical process rather

than signals. One must remember that VHDL is signal-driven, not behavior-driven. This

guideline may not hold for very complex behaviors, but it should still prove to be a good

rule-of-thumb.

NNode 1 Node 0

Figure 6.9 Active Signal Comparison.

Note in Figure 6.9 that both nodes have the same number of gates. However, node

0 has five signals which can cause the gate to be executed; node 1 only has two. In the
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Intermetrics-based model, if all of the input signals change at once, the gate on node 0 is

executed five times. The gate on node 1 is only executed twice. Therefore, in the current

model, it is the number of active signals which is the key to distributing workload -- not the

number of gates.

Partition a pipeline-type circuit by reducing each nodes work by one-third. This

proved to be efficient for the carry-lookahead adder where the workload on four nodes was

12, 8, 6, and 4. Although this worked for this test case, many more experiments should be

run to confirm this theory.

Carefully modify the Intermetrics' generated C source code. Until a validated

compiler is written, this step in parallel simulation is crucial. It is as difficult to find and

correct an error in this stage as it is tedious to perform.

Ensure a high computation to rommunication ratio. That is, ensure that there are

several components on which each node can work or try to reduce communication between

nodes. One can try to increase the ratio by better partitioning of the circuit or by

consolidating logical processes onto fewer nodes.

6.5 Recommendations for Future Research

There are many interesting areas of research which would further knowledge in this

field of parallel VHDL simulation. Since this domain is just beginning to be explored, many

of the basics still need to be accomplished. Some ideas are offered below:

1) Write a compiler to translate from Intermetrics' generated C source code to C

code which is compatible with the parallel simulator. The compilation process simple, as the
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procedure in section 4.2.2 will attest. Until a compiler is written, laigel models are not

attractive since they will be so much more difficult to "compile by hand."

2) Create and run larger VHDL models. Even greater gains in speedup wi!l be

realized once larger, more complex circuits are simulated. Using the ca: "y-save adder, it

should be relatively straight-forward to create an eight-bit multiplier.

3) Expaud the VHDL subset to include arrays. Often in the world of VHDL there

are processes which "sleep" until a certain simulation time arrives. These "sleep times" are

recorded as array structures. This research did not successfully implement the necessary

array structure and constrained the test cases to ttkose without arrays. This problem simply

requires time and a solid understanding of the C programming language (of which this

author humbly remains in ignorance).

4) It would also be useful to find some way to automatically partition the VHDL

circuit to the nodes. Perhaps one could use the original VHDL configuration file and map

the dependencies of components to dependencies of logical processes. Until this is done,

one is forced to use trial and error which will not work for an end user.

5) Expand the simulation clock to go past 2.1 seconds. It is currently limited by

Intermetrics' model to one 32-bit integer with it value representing a femptosecond. One

could follow Intermetrics' lead and concatenate two 32-bit integers to allow for simulation

beyond 2.1 seconds, but there may be a more elegant solution.

6) Parallelize a circuit with feedback. This circuit poses many challenges for the user

in the areas of mapping, communication, and the optimal number of nodes on which to run.

Since no circuits with feedback were considered as part of this research and feedback is a
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necessary part of many circuits, research in this area is needed.

6.6 Conclusions

The parallel simulator that has been designed and implemented performs the function

for which it was meant. It has successfully simulated three VHDL circuits and demonstrated

speedup for each circuit. Although there are constraints in mapping any application to a

parallel processor, this simulator and the three test circuits have met those constraints and

still performed admirably. VHDL simulations certainly have a future in distributed

processing.

Despite great advances in every generation of computers, there has never been a

computer that has been called "fast enough." Instead, it is human nature to find bigger and

more complex problems which challenge the fastest of the fastest computers. Today, the

fastest computer is a parallel processor. But it is only "fast" if the user can map an

application to it which is suited for that particular archi, .cture. VHDL applications offer

such a mapping for a hypercube-type architecture.
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Appendix A. PVSIM. C Source Code

This appendix contains a listing of the parallel simulator code which is resident on the

iPSC/2 hypercube. The code is commented to help any maintenance programmer understand

the design.

A.1 PVSIM.C

/********* *k***************** *****x **x*x*****x* **

* File Name: pvsiw.c (Parallel Vhdl SIMulator) *
* Author: Capt Ron Comeau *
* Advisor: Maj Kim Kanzaki
* Date: 1 Nov 91
* Algorithm: This file, when linked with generated C source files from
* -the Intermetrics sequential VHDL model generator, will run the VHDL
* simulation in parallel on the iPSC/2 hypercube.

******************************************************************

#include "simutl.h"

/* Definitions */
#define EVENT TYPE 10 /* VHDL signal event */
#define MIN DELAY 3000000 /* min propagation delay */
#define MAX-TIML 2G00000000 /* max simulation time
#define REALLOC ,OCK 1024
#define MAPPING-, /* mnDping switch (l-on) */
#define OUTPUT 1 /* output switch (lNon) */
#define BUSY 0 /* spin loop switch (l=on) */

/* Externals */
extern int mynode; /* node id */
extern int my pid; /* node process id
extern int total nodes; /* total active nodes

/* Parallel Processing Variables */
BOOL waiting on others - 0; /* node shutdown flag *1
char siglstfTOOT; /* array of pointers to

signal records *1

/* VHDL simulation variables */
int *cv; /* mem location of current

signal values */
!NITK *initst = NULL; /* initialize set */
char *lv; /* last value memory */
BOOL cnstrt - 0; /* constraint flag */
INT32 lvcnt - 0; /* connection count *1
TIME *now; /* delta time value */
int numbeh - -1; /* number of behs */
int numnet - -1; /* number of net behs */
int numsig - -1; /* number of net behs *1
TMPK *tmpbeh; /* holder for behs */
TMPK *thisptr; /* holder for behs */
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TMPNK *tmpnet; /* holder for net behs
int coff - 0; /* offset for cv
int poff - 0; /* offset for pv */
int sigid = 0; /* next signal id */
STIME *currnt; /* holder for current time */

typedef struct SIG RECS 1 /* Active Record structure */
int time; /* signal change time
SRREC * srptr; /* signal record
int value; /* new value
struct SIGRECS * next-sig rec; /* ptr to next active rec */

SIGREC;

typedef struct EVENTS I /* Event Record structure */
int from lp; /* lpid of ip sending event */
int to_lp; /* lpid of destination lp */
int time; /* current time of sending lp */
int sr_num; /* sr number

int sr time; /* timestamp of signal change */
int vaTue; /* new value for signal */

EVENT;

SIG REC * sig rec head; /* ptr to Active Rec list */
EVENT * this- event; /* ptr to Event record
SRREC *srrec_pEr[300]; /* array of pointers for

every signal in simulation */
int binode[100]; /* array of node location for

every behavioral instance */
0CONNT *checkptr; /* ptr to BI connections */
int low time; /* lowest time on Active Recs*/
int safe time[8]; /* safe time from other nodes*/
BOOL waiing([8j; /* nodes waiting for messages*/
char outstate[80]; /* output statement to confirm

what was received by node */

* Function Name: init cv *
* Purpose: Performs initialization functions for the parallel simulator. *
• Reads in queue.dat and lp.arcs files. Initializes "waiting" and
• "safe time" for each node according to the information in the lp.arcs
* file. Allocates memory space for current signal values and assigns
* that pointer to cv.

init cv ()
t

FILE *fp;
int bi num, node num, type num, from lp, to_lp, j;
char filename[llT;

currnt->delt - 0;
this event - (EVENT *) malloc(sizeof(EVENT));
chec1Eptr - (CONNT *) get_new(sizeof(CONNT));

sprintf(filename, "queue%d.dat", total nodes); /* read queue.dat file */
if ((fp - fopen(filename, "r")) -- NULL)

printf("Cannot open file %s.\n", filename);
exit(l);

while (fscanf(fp, "%d %d %d", &binum, &nodenum, &typenum) >- 0)

if (type num -- -1) binode[binum] = my-node;
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else bi node[bi numJ node_num;

if (fclose(fp) 0=Q printf("lerror closing queue file.\n");

sprintf(filename, '"lp%d.arcs", total nodes); /* read lp.arcs file *
if ((fp - fopen(filename, "r")) -NULL)

printf("Gannot open file %s.\n", filename);
exit(l);

for (j=O; j<total nodes; j++)

safe timefi] - MAX TIME;
waiting~j] - FALSE;

while (fscanf(fp, "%d %d", &from-lp, &tolp) >- 0)

if-k(to1p == my node) safe timef from lp] MINDELAY;
if (froimlp =- my noe w-ig 1o = TRUE;-

safe- time~my node] = M4INDELAY;
if (Tclose(fp) != 0 ) printf("error closing lp.arcs file.\n");

Z4000001 - (Z4000001 int struct *) malloc(sizeof(Z4000001_mnt struct));
24000001->ZOOOOO0l1T400=- 0;
now &crnttime) /* init current time *
return get new((unsigned)REALLOC BLOCK); /* return mem space for

current signal values *

* FunctionName: sim it
* Purpose: To execu~te the behavioral instances that are in the

* behavior list. After the last has been executed, the changes to the*
* signal values are updated.

sim it (thisptr)
TMPR *thisptr;

mnt i;
BOOL update flag - FALSE;

if (thisptr '\O'
thisptr =tmpbeh; 1* point to top of Behavior

Records list *
update flag -TRUE;

-if (thisptr !- '\O')

if ((*thisptr).nextb != '\O')

sim-it ((*thisptr).nextb); /* recursively call sim it
for next behavior *

i - ((*(*thisptr).beh).id);
if (MAPPING) printf("%d->Executing behavior number %d.\n", my node, i);
(*thisptr->beh->exec)((*thisptr).beh): 1* execute behavior-
if (BUSY) for (i-0; i<10000; i++) NULL; /* busy loop *

else

i - ((*(*thisptr).beh).id);
if (MAPPING) printf('%d->Executing behavior number %d.\n". my node, Q);

A -3



(*thisptr->beh->exec)((*thisptr).beh); /* execute behavior
if (BUSY) for (i=O; i<lO000; i++) NULL; /* busy loop

if (updateflag)

update );

* Function Name: update
* Purpose: To update the signal values for the next event time and *
* schedule the behavioral instances that they are connected to for *
* execution. Before the simulation time is advanced, this node must *
* be sure that it will not receive any messages for an earlier time *
* from any upstream nodes.

/* Function Name: update added by ROC */
update ()

SIG-REC * markptr;
SIG-REC * lastmptr;
SIGREC *templ;
TMPK * hold;
CONNT * behav ptr;
char units ou[4];
int i, j, time out, k;
BOOL okay, not-answered, notsafe;

tmpbeh = NULL;
if (sigrechead !- '\O') /* there are still updates

to make

waiting on others = FALSE;
markptr - sig rec head;
low time - (*markptr).time;
while (markptr !- '\O') /* check all Active Records

to find the low time */

if ((*markptr).time < low time)
low time = (*markptr).t-lme;
marlEptr = (*markptr).next-sig-rec;

safe time[my node] - low time;
get_ ventO;- /* check safe times for all

other nodes until we can
update signals

if (currnt->time->least != safetimelmy node])

if (safetime(mynode] >= lowtime)

currnt->time->least - low-time;
)

this event->from lp - my node;
this-event->time-= currnt->time->least + MINDELAY;
this-event->sr num- mynode;
this-event->sr time - currnt->time->least + MIN-DELAY;
this-event->value - -1;
for (j-O; j<totalnodes; j++)
C
if (waiting(j])
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/* send a null message to
any waiting node *

this event->to ip j;
csend(EVENTTYPE, this event, sizeof(*this-event), j, mypid);

okay =TRUE;

for 0-0O; j<total_nodes; j++)

if k kJ !- my node) && (safe time[j] <= low-time))

okay =FALSE;

markptr - sig rec head;
lastmptr - sig rec head;
while ( (okay)-&& _(markptr !- '\O') && (low time <- currnt->time->least))

if ((*markptr).time - low-time)

if ((*markptr).value !- *(cv + (*markptr).sr_ptr->cval))

time Iout - currnt->time->least;
if (time_out<lOOO) sprintf(units_out, "fs");

else

time-out - time out/lOOO;
if (time out<lOUO) sprintf(units out, "ps:)

else

time out - time out/lOOO;
sprintf(units_oiit, 'Ins");

if (OUTPUT)

if (time-out>999) printf("%d-> At time %d", my_ node, time-out);
else

if (time out,99) printf("'%d-> At time %d", my_ node, time-out);
else prinitf("%d --- > At time %d", my_node, time-out);

if (currnt->delt == 0) printf(" %s,", units out);
else printf("I %s + %d,11 units out, currnt-7>delt);

printf(" Signal '%s' is changing from %d to %d-\n",
(*markptr).sr pcr->name, *(cv + (*markptr).sr_ptr->cval),
(*markptr) .value);

-(cv + ((*markptr).sr ptr->cval)) - (*markptr).value;
behav ptr = (*markp---r).sr ptr->conns;
while (behav-Ptr !- '\0')_

i - ((*(*behav ptr).bhv).id)-
if (bi-nodef i] -Z my_ node)

hold - (TMPK *) get new(sizeof(T.MPK));
hold->ne:xtb - tmpbeR;
hold->beh - beh ,ptr-bhv;
tm pbeh -hold;

behav-ptr -behav-ptr->nb;
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if (sig-rec head ~=markpcr) sigrec-head =(*markptr).next_sigrec;
markptr - (Wrarkptr).next sig rec;
(*lastmptr).next_sigrec =markptr;

else

lastmptr markptr;
markptr =(*markptr).next-sig-rec;

if (sig rec head -== '

waiting-on others = FALSE;
for (j=v; j<total_nodes; j++)
if ( (j !- my node) && (safe_time[j) < MAXTIME))
waiting on -otHers - TRUE;

while (waiting on others)

get -evento;
if (tiipbeh -- '\O') updateo;
sim it (NULL);
waiting on others =FALSE;
for (j-U; T<total nodes; j++)
if ( (j != my n~de) && (safe_time[.j] < MAX TIME))
waiting_on others =TRUE;

if -(tmpbeh == \0') updat-eo;
Sim-it (NULL);

FunctionName: get event*
* Purpose: To receive messages from upstream nodes until the simulation*

* can proceed.*

get_event()

SIG REG *templ;
charF units outf4];
int i, j, lZ;
BOOL not answered;

safe_time(my node] low_time;
i-Q;
while (i < total-nodes)

if k k (safe ti~mefi] <= low time) && (i 1= my node))
II((waiting on others) && (safe time~i] Z Mt.-XTIME) &&

(i !=- my_node))

not answered = TRUE;
while (not-answered)

crecv(EVENTTYPE, this event, sizeof(*this_event) )
if (this event->value ;:- -1

j = this event->from lp;
if ((saf-etimeljj]) <C(this_event->time)) /* update safe time *

safe timeti] this-event->time;
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if ((this event->time) ==-1) /* that node is done *

safe time~j] = MAX_-TIME;
waiting on others - FALSE;
for (j=U; T<total nodes; j++)

if ( (j != my node) && (safe_time~j] < MAXTIME))
waiting_on_otFers = TRUE;

not answered -(j =i )

saf-e timelmy node] =safe time~j];
for (j=O; j<total nodes; j++)

it' ((safe time[lmy_ node]) > (safe_time[j]))

safe_timelmy node] - safe_timeij);

if (currnt->time->least < safe_time[my node])

if (safe_timelmy_ node] < low-time)

currnt->time->least = safe timeljmy node];

else

currnt->time->least = low-time;

this event->from-lp - my node;
this event->time = currnt->time->least + MIN-DELAY;
this event->sr num =my node;
this-event->sr-time -currnt->time->least +- MIN-DELAY;
this event->va~ue = -1;
for Tj-O; j<total nodes; j++)

if (waitingli])

this Ievent->to lp = j
csend(EVENT_TYPE, This event, sizeof(*this event), j, mypid);

else

templ -(SIG -REC *) malloc(sizeof(SIGREC));
templ-.>time this-event->sr-time;
k -this event->sr num;
templ->sr ptr srrecptrfk];
templ->value =this-event->value;
templ->next sig rec - sig rec head;
sig rec heaU = Eempl;-

sprintEf(outstate, "%d->Rcvd %s with value %d for time %d\O",
my node, templ->sr ptr->name, templ->value, templ->time);

if (low-time > (tEhis_event->sr_time))

low -time -this-event-?;sr-time;

if ((this-event->fromlp) ==i) not-answered FALSE;
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* Function Name: mksig
* Purpose: To allocate a signal record for every signal, assign

* initial values to the record's fields, add the pointer to *
the record in the correct position of the srrecptr array,

* and return the pointer to the calling program.

SRREC *
mksig (sz)

INT16 sz;

SRREC *sr;

sr = (SRREC *) getnew(sizeof(SRREC));
sr->id = sigid;
sr->size = sz;
sr->trp = FALSE;
sr->attp - FALSE;
sr->disc a FALSE;
sr->atts = NULL;
sr->cval - coff; /* added by RCC */
sr->trans - NULL;
sr->conns - NULL;
sr->descr = NULL;
poff - poff + sz;
coff a coff + sz;
numsig = sigid;
srrec ptr[sigid] sr;
sigid++;
return sr;

* Function Name: strbi
* Purpose: To add behavioral instances to the behavior list.

********************* , ****************************

strbi (bi, tzp, sr)
BHINST *bi;
BOOL tzp;
SRREC *sr;

TMPK *hold;
TMPNK *thold;

if (bi->prty >= tstb)
if (tmpnet == NULL II tmpnet->beh != bi)
numnet++;
bi->id - numnet;

thold - (TMPNK *) getnew(sizeof(TMPNK));
thold->nextb = tmpnet;
thold->sig - sr;
thold->beh = bi;
tmpnet - thold;
else (
numbeh++;
bi->id = numbeh;
bi->stkrec.lngth = -1;
bi->stkrec.stack = NULL;
if (binode[numbeh] == my node)

hold a (TMPK *) get_new(sizeof(TMPK));
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hold->nextb = tmpbeh;
hold->beh - bi;
tmpbeh - hold;

Y;
return XNONE;

* Function Name: setkck *
* Purpose: To connect a behavioral instance output to any behavioral *
* instances for which it is an input. When an output value *
* changes, the behavioral instances which will be affected are *

added to the behavior list (hold) for execution. Those BIs *
* are found via the pointers in the "conns" field.
*** .********************************;* ***********************k****A***kA A**

CONNT *
setkck (sr, bi, flagstat)
SRREC *sr;
BHINST *bi;
BOOL flagstat;

CONNT *hold,*tmp;

hold - (CONNT *) get new(sizeof(CONNT));
hold->bhv = bi;
hold->flag = flagstat;
if (bi->prty > tstb) {
hold->nb = sr->conns;
sr->conns - hold;
else (
hold->nb = NULL;
tmp - sr->conns;
if _(tmp == NULL)
sr->conns = hold;
else (
while (tmp->nb !- NULL) tmp tmp->nb;
tmp->nb - hold;1;

1;
return hold;

* Function Name: init
* Purpose: To initialize every BI that a signal is an input for and *
* execute it to make sure its outputs have a correct value for *
* the newly initialized input.

init(fnc, pktl, brbl)
FNP fnc;

LSTNDE *pktl;
LSTNDE *brbl;

INITK *hold;
INITK *initptr=initst;

hold - (INITK *) malloc(sizeof(INITK));
hold->func - fnc;
hold->pkts = pktl;
if (initptr && initptr->pkts = NULL)
while (initptr->nexti && initptr->nexti->pkts =- NULL)
initptr = initptr->nexti;
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hold->nexti = initptr->nexti;
initptr->nexti = hold;

} else
hold->nexti = initst;
initst = hold,

(*(&fnc))(pktl);
return XNONE;

* FunctionName: padit
* Purpose: To increment the offset values of memory pointers.

padit (sz)
UINT16 sz;

poff = poff + sz;
coff = coff + sz;

* Function Name: strsr
* Purpose: Intermetrics uses it for memory alignment of all of the
* the signal records. I use it because this is where each *

signal is assigned a unique I.D.

strsr(sr)
SRREC *sr;

#ifdef SUN4

/* SAB (4/12/90)
The Sun 4 requires strict memory alignment for the appropriate data
types. Therefore, padding may be necessary for various signal types
depending on the current value of coff.*/

int padding = coff % sr->size;
int lcv;
char *oldcv;

if (sr->size != 1)
if (padding != 0)
coff += (sr->size - padding);

/* Ensure the signal current value array (cv) is large enough, if not
reallocate it.*/

if ((coff + sr->size) >- save coff)
/* cv - realloc(cv, (unsigned)REALLOC_BLOCK); /* realloc on Sun 4 buggy */
old cv = cv;
/* Allocate new memory block */
cv = get new((unsigned)(save coff + REALLOC BLOCK));
/* Copy contents of old si nal value array to new one */
cv = memcpy(cv, old cv, coff);
/* Initialize the u-nitialized part of new array to O's */
for (lcv=coff; lcv<(save coff+REALLOCBLOCK); lcv++)

cv[lcvJ = 0;
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/* Bumip save coff to point to end of the new block *
save coff += REALLOGBLOCK;
/* Release old signal array memory block *
free(old cv);

-#endif

sr->cval =coff;

coff +- sr->size;
if (sr->attp)

sr->atts - (STQT A) get new(sizeof(STQT));
sr->atts->lstevnt - (STYME *)get -new(sizeof(STIME));
sr->atts->lsttrns = (STIME *)get new(sizeof(STIME));
sr->atts->lstevnt->time - (TIME *) get new(sizeof(TIME));
sr->atts->lsttrns->time = (TIME *) get-nwszo(IE)

#Tifdef SUN4 
ewszo(IE)

/* SAB (4/17/90)
lval and lvcnt must also ensure proper alignment on the
Sun 4.

mnt padding = lvcnt % sr->size;
if (sr->size 1=1)

if(padding I-0)
lvcnt +- (sr->size - padding);

"endif
sr->atts->lval - lvcnt;
lvcnt = lvcnt + sr->size;

sr->atts->lstevnt->time->least -=2
sr->atts->lstevnt->time->most - 2147483647;
sr->atts-->lstevnt->delt - 0;
sr->atts->lsttrns->time->Ieast = -2;
sr->atts->lsttrns->time->most = 2147483647;
sr->atts->lsttrns->delt = 0;

siglst[sr->idj sr;

* Function -Name: sqadd
* Purpose: To add to times together (I followed Intermetrics example -

* don't ask me why they do this twice.)

sqadd (timel, time2, time3)
TIME * timel, time2, time3;

(*timel).least - time2.least + time3.least;
(*ti-mel)lIeast - time2.least + time3.least;

*Function-Name: posts8
*Purpose: To post an event (new signal output) for a future time.

posts8 (poinszrl, numberl, addrl, typel, constrtl)
mnt numberi, typel, constrtl;
SRP pointrl;
TIME * addrl;

A-]IJ



SIGREC *templ;
int send -msg[8];

check-ptr = pointrl->conns;
for (i=0; i<total nodes; i++) send msgf i) = 0;
if (check ptr -- 7\0') /* an output signal is being posted *

/* add it to the iist *
tempiL - (SIG REC *) malloc(sizeof(SIGREC));
templ->time -addrl->least + currnt->Eime->least;
templ->sr ptr =pointri;

templ->value =numberi;

templ->next sig -rec =sig rec_head;
sig-rec head = temp i
i= total-nodes + 1;

while (check ptr ! \'

/* identify nodes which are affected by
by the signal change *

i = check ptr->bhv->id;
j = bi._nodef ii;
send msgg[j] - 1;
checlE tr - ((*checkpt)n)

while (i < total-nodes)

if k send msg~i]1

if (my node - i) /* post to this node's active records *

templ - (SIG REC *) malloc(sizeof(SIGREC));
templ->time =; addrl->least + currnt->time->least;
templ->sr ptr =pointrl;

templ->valuie -numberl;
templ->next sig Irec - sig rec-head;
sig rec head = templ;
check ptr = pointrl->conns;
while (cheek ptr != '\0')

3 - check ptr->bhv->id;
if (MAPPING && (bi node[j 1=-my node))

printf('%d-> Tdd behav %d to my list (node %d) for time %d \n",
my node, j, my_node, templ->time);

checkp'Er - ((*checkptr).nb);

else

if (currnt->time->least > 0) /* send a message to the node *

this event->from -lp - my node;
this event->to lp -;
this event->time currnt->time->least + 141NDELAY;
this-event->sr num -pointrl->id;
this event->sr-time currnt->time->least + addrl->least;
this event->value = numberl;
csend(EVENTTYPE, this_e-ent, sizeof(*this_event), i, my_pid);
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* Function Name: rptast *
* Purpose: To report an assertion error when one is raised. *

rptast 0
if (OUTPUT)
printf("Assertion error at %d\n", currnt->time->least););

* Function Names: close sigdict, m realtype, m inttype, m signal, pop, *
* - push, readinput, rmtrrec, rpterr, rptstats, sched, *

Start Nonarray Comp, timer, and tpop *
* Purpose: To allow me-to leave-these calls in the Intermetrics-generated*
* C source code. They simply returr: to the calling program. *

close sigdict 0 {;
m_reaTtype () (1;
m int-type () {;
void m signal(signal, sigid, dummy)

int signal(]; int sig-id; int dummy; H;
pop () );
push (strl, numberl, pointrl)

char strl[25]; int number].; int pointrl; };
read input () {;
rmtrrec () );
rpterr 0 U;
rptstats () {;
sched () {;
Start NonarrayComp 0 {;
timer-() U;
tpop () ;
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Appendix B. An Example

To help the reader understand how the parallel simulator works, an example is provided.

This appendix allows the reader to follow the pseudocode in Figure 4.19 using the full adder

circuit. Below tells how the circuit is mapped to and executed on the parallel simulator.

B.1 The Full Adder

The circuit diagram for the full adder is shown in Figure B.1 and the lp.arcs file and the

queue.dat file are displayed in Tables B.1 and B.2, respectively.

Y X

GIN
GOUT r- F-

SUM

Figure B.1 Full Adder
Circuit Diagram.

Table B.1 Lp.arcs File. Table B.2 Queue.dat File.

From To Behavioral Instance Node
0 1 0 0
0 2 1 0
12 2 1

3 1
4 2
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After lines 1 through 10 of Figure 4.19 have been executed, Figure B.2 shows the

safetimes and the waiting values for each of the three processors. In this application,

MAXTIME is set to 2000 ns and MINDELAY is set to 3 ns (the delay of a single gate). At

line 11 all of the signals are initialized to a '0' value. The data records are set up as shown in

Tables B.3 and B.4. Since the "cval" field in the Signal Record is :imply a p.,inter to a memory

location that holds the current %alue, this example exchanges a current value field, "cur %al", for

clarity in the following tables.

Table B.3 Signal Records at Initialization.

id size name cur val conns
0 1 Y '0' 0,1
1 1 X '0' 0,1
2 1 CIN 10' 2,3
3 1 COUT 1 '0' 4
4 1 SUMi '0' 2,3
5 1 COUT 2 '0' 4
6 1 SUM '0'
7 1 COUT '0'

Table B.4 Behavioral Instance Records.

id node exec inputO inputi outputo
0 0 address(AND) 0 1 3
1 0 address(XOR) 0 1 4
2 1 address (AND) 2 4 5
3 1 address(XOR) 2 4 6
4 2 address(OR) 3 5 7
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P0 P1 P2
waiting[l] = T waiting[0] = F waiting[0] = F
waiting[2] = T waiting[2] = T waiting[l] = F
safe time[l] = 2000 safe time[0] = 3 safe-time[0] = 3
safetime[2] = 2000 safe time[2] = 2000 safe time[1] = 3
simtime = 0 sim time = 0 sim time = 0

Figure B.2 Current Processor States.

At line 11, any system input signals which affect any BI on the node are added to the

Active Records list, which is shown in Figure B.3. These input signals are supplied by the test

bench originally and come as part of the Intermetrics-generated C source. For purposes of this

example, let "X" go to '1' at 50 ns. At line 12, the gate behavioral instances executed (if they are

assigned to the node). Thus, the Behavior List for eacL processor at simulation time 0 is as

shown in Figure B.4.

P0 P1 P2
time value sigrec time value sigrec time value sigrec
50 '1' 1

Figure B.3 Current Active Records.

P0 P1 P2
beh beh beh

0 2 4
1 3

Figure B.4 Current Processor States.

After the behavioral intances are executed at lines 14 through 23, the Behavior List is

empty on each of the nodes. Active Records have been posted as a result of the executions at
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time 0 ns. The result is shown in Figure B.5. The LowTime on all three nodes is 3 ns, but node

0 is the only one that can process since node O's safe times are greater than 3 ns. The other wait

to receive a message to update their safe times.

Node 0 assigns 3 ns as the simulation time on node 0 and sends this time plus

MINDELAY to the nodes where the "waiting[]" value is true. Node 1 can now proceed in the

same fashion. It updates its simulation time to 3 ns and sends a message to node 2. Node 2 is

now free to continue processing also. The new safe time values are shown in Figure B.6.

P0 P1 P2
time value sitrec time value sigrec time value siirec
50 '1' 1 3 '0' 5 3 '0' 7
3 '0' 3 3 '0' 6
3 '0' 4

Figure B.5 Current Active Records.

P0 P1 P2
waiting[1] = T waiting[0] = F waiting[0] = F
waiting[2] = T waiting[2] = T waiting[i] = F
safe time[1] = 2000 safe time[0] = 6 safe time[0] = 6
safetime[2] = 2000 safe time[2] = 2000 safetime[l] = 6
simtime = 3 sim time = 3 sim time = 3

Figure B.6 Current Processor States.

Proceeding with line 36 on each node, they all have records for 3 ns, but all of the new

values match the old value.s. Therefore, these records are simply discarded to prevent

propagating useless calculation. They return to the loop on line 13 and all three enter the loop
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and jump to line 24. The LowTime for node 0 is 50 ns and this is assigned as the

SimulationTime as well. Node l's safetime for node 0 forces it to wait for a message at line

26. Node 2 also must wait for a message at line 26.

Node 0 sends a NULL message for 53 ns (simulation time plus MINDELAY) to nodes

1 and 2. They both update their safe time for node 0, but they both must continue v'aiting.

Node 0 proceeds up to line 38. Since the new value ('1') is different from the current value, the

current value is updated for signal 1. Line 42 uses the "conns" field of signal record 1 to see

which BIs are affected. It then cross-references these BIs to their records to see on which node

they reside. In both cases it is node 0, so it adds BIs 0 and 1 to node 0's Behavior List. Table

B.5 shows the signal values for node 0 at time 50 ns.

Table B.5 Node O's Signal Records at Time 50 ns.

id size name cur val conns
0 1 Y '0' 0,1
1 1 X 'i' 0,1
2 1 CIN '0' 2,3
3 1 COUT i '0' 4
4 1 SUMi '0' 2,3
5 1 COUT 2 '0' 4
6 1 SUM '0'
7 1 COUT '0'

Node 0 returns to line 13, reenters both the loon at line 13 and the loop at line 14.

Behavioral Instance 0 is executed (an AND routine) with input signals 0 and 1.

After BI 0 is executed, a '0' at time 53 ns results for output signal 3, which connects to a BI on

node 2. Per line 19, a message is sent to node 2, which posts the signal change to its Active

Records. Likewise, a message is sent to node 1 for signal 4 changing to a T at 53 ns. After this,
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node 0 continues through the loops and sends an "All Done" message to nodes 1 and 2, per line

49. This allows them to update their safe times for node 0 to MAXTIME (2000 ns). The

current status of each node is shown in Figures B.7 and B.S.

P0 P1 P2
time value sigrec time value siarec time value sierec

53 '1' 4 53 '0' 3

Figure B.7 Current Active Records.

P0 P1 P2
waiting[1] = T waiting[0] = F waiting[0] = F
waiting[2] = T waiting[2] = T waitingfl] = F
safe time[l] = 2000 safe time[0] = 2000 safe time[O] = 2000
safe time[2] = 2000 safe time[2] = 2000 safe time[i] = 6
sim-time = 2000 sim-time = 3 sim time = 3

Figure B.8 Current Processor States.

Node l's new LowTime and SimulationTime now become 53 ns. A null message is sent

to Node 2 for 56 ns, as per line 35. This message allows node 2 to update its safe time for node

1 to 56 ns, and proceed. Since the signal on node 2 is still a '0", the Active Record is simply

discarded per lines 38 and 39. Node l's old value for signal 4 does not, however, equal the new

value so the value is updated and the behavioral instances 2 and 3 (which reside on node 1) are

added to the behavior list. Node l's signal values are shown in Table B.6.

Node 1 reenters both loops at lines 13 and 14. Executing BI 2 results in a '0 for signal

5 at 56 ns. This information must be sent to node 2 since signal 5 is an input for BI

B-6



Table B.6 Node l's Signal Records at Time 53 ns.

id size name cur val conns
0 1 Y '0 0,1
1 1 X '0 0,1
2 1 CIN '0' 2,3
3 1 COUT 1 '0' 4
4 1 SUM1 '1 2,3
5 1 COUT 2 '0' 4
6 1 SUM '0'
7 1 COUT '0

number 4, which resides on node 2. A '1' results for signal 6 at 56 ns from executing BI 3. This

signal has nothing in the "conns" field since it is a system output. Therefore, it is posted to node

l's own Active Records. The Active Records for each processor is shown in Figure B.9 and the

simulation status is given in Figure B.10.

P0 P1 P2
time value sigrec time value sigrec time value sigrec

56 '1' 6 56 '0' 5

Figure B.9 Current Active Records.

P0 P1 P2
waiting[I] T waiting[0] = F waiting[0] = F
waiting[2] = T waiting[2] = T waiting[l] = F
safetime[1] = 2000 safetime[0] = 2000 safetime[0] = 2000
safetime[2] = 2000 safetime[2] = 2000 safetime[1] = 53
sim time = 2000 sim time = 53 sim time = 53

Figure B.10 Current Processor States.

Node 1 exits the loop at line 23, and updates its Low-Time and SimulationTime to 56
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ns. At line 35, it sends a null message for time 59 ns to node 2. That allows node 2 to update

its safe time for node 1 at line 28. Node 2 then exits its loop at line 33, sees that the new value

matches the old value for signal 5, and eventually goes back to waiting at line 26.

Node 1 enters the loop at line 36, sees that the old value does not match the new value

and-so updates its signal record. When a system output, such as "SUM" is updated, a message

is printLd for the user. Thus, the user would receive a message such as "SUM has changed from

a '0' to a '1' at 56 ns." Node 1 now exits all of the loops and sends an "All Done" message to

node 2, per linc 49. Node 2 updates the safe time for node 1 to MAXTIME, and since it has

nothing left to do, exits the loops and finishes up as well. Now the system is quiesced and the

simulation is over.
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Appendix C. Statistics

This appendix contains the pertinent statistics for all of the test runs that were made

during this research. The results and conclusions from these statistics are given in Chapters 5

and 6.

C.1 The Ripple-Cany Adder

Nodes Mean Std Dev Min Max Loops Vectors Output

1 1695 37.864 1515 1747 0 32 No

1 1949 15.197 1908 2001 100 32 No
1 2954 23.084 2926 3026 500 32 No
1 4184 10.026 4151 4219 1000 32 No
1 6686 95.575 6629 7186 2000 32 No
1 14110 16.430 14076 14174 5000 32 No
1 26515 16.906 26476 26587 10000 32 No
1 4796 24.800 4762 4881 0 64 No

1 53201 15.033 53171 53253 10000 64 No
1 38959 5245.452 33096 55531 0 64 Yes

2 1076 14.019 1041 1093 0 32 No
2 1218 17.120 1185 1295 100 32 No

2 1731 34.941 1685 1874 500 32 No
2 2338 13.668 2309 2395 1000 32 No
2 3617 57.990 3551 3844 2000 32 No
2 7341 28.270 7303 7445 5000 32 No
2 13597 10.205 13565 13616 10000 32 No
2 2427 69.290 2394 2772 0 64 No
2 26713 10.932 26695 26754 10000 64 No

2 32670 2474.194 30258 38095 0 64 Yes
4 1182 13.594 1129 1211 0 32 No
4 1257 14.503 1222 1316 100 32 No

4 1530 56.459 1449 1728 500 32 No

4 1814 19.423 1751 1864 1000 32 No
4 2460 65.447 2412 2703 2000 32 No
4 4362 52.569 4299 4596 5000 32 No
4 7578 108.741 7493 8096 10000 32 No
4 2001 9.030 1982 2029 0 64 No
4 14262 13.865 14239 14316 10000 64 No

30797 583.105 30183 33138 0 64 Yes

8 1662 46.555 1520 1834 0 32 No
8 1887 266.764 1558 2712 100 32 No
ri 1848 89.020 1680 2156 50- 32 No

8 1980 15.967 1932 2040 1000 32 No
8 2409 183.300 2239 3019 2000 32 No
8 3322 144.604 3167 3930 5000 32 No
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Nodes Mean Std Dev. Min Max Loops Vectors Output

8 4851 14.304 4817 4871 10000 32 No
8 2200 7.214 2184 2214 0 64 No
8 8328 26.077 8248 8373 10000 64 No
8 32405 855.165 30413 33954 0 64 Yes

C.2 The Cany-Lookahead Adder

Nodes Mean Std Dev Min Max Loops Vectors Output

1 10250 19.391 10220 10323 0 64 No
1 11180 18.045 11149 11260 100 64 No
1 14899 21.536 14871 14999 500 64 No
1 19551 16.753 19518 19623 1000 64 No
1 28847 19.017 28818 28914 2000 64 No
1 56747 15.501 56721 56809 5000 64 No
1 103245 35.570 103210 103427 10000 64 No
2 6725 14.292 6707 6772 0 64 No
2 7361 12.844 7337 7414 100 64 No

2 9871 11.633 9858 9927 500 64 No
2 13022 14.965 13004 13078 1000 64 No
2 19321 17.020 19302 19383 2000 64 No
2 38207 11.853 38190 38262 5000 64 No
2 69688 6.942 69672 69700 10000 64 No
4 3892 13.283 3864 3933 0 64 No

4 4298 27.163 4270 4295 100 64 No
4 5423 19.882 5396 5503 500 64 No
4 6927 13.976 6907 6974 1000 64 No
4 9935 12.985 9916 9969 2000 64 No
4 19004 13.583 18987 19065 5000 64 No
4 34148 24.107 34126 34263 10000 64 No
8 4338 53.422 4272 4528 0 64 No
8 4807 43.374 4721 4911 100 64 No
8 5133 26.722 5067 5183 500 64 No
8 5860 26.113 5776 5909 1000 64 No
8 7321 38.268 7224 7385 2000 64 No
8 12253 56.891 12153 12420 5000 64 No
8 20575 50.449 20426 20708 10000 64 No

C.3 The Cany-Save Adder

Nodes Mean Std Dev Min Max Loops Vectors Output

1 4233 14.566 4208 4277 0 64 No
2 1932 68.958 1905 2288 0 64 No
4 1303 27.050 1286 1420 0 64 No
8 1426 17,145 1380 1442 0 64 No
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Appendix D. Configumtion

The purpose of this appendix is to show all of the files on the iPSC/2 hypercube that make

up the parallel simulator and the three test cases. Currently, each test case uses its own direc-

tory. Therefore, some files may be redundant such as simutl.h. Some, however, are different

even though the names are identical, such as queue8.dat. Therefore, the user must analyze the

files, select the appropriate set of files, find the correct mapping for the simulation, sit back, and

watch the simulation run!

D.1 The Files

File Location Purpose

cla.c /usr2/eng/rcomeau/cla Large C source file for VHDL
behavior of carry-lookahead adder

csa.c /usr2/eng/rcomeau/csa Large C source file for VHDL
behavior of carry-save adder

eba.c /usr2/eng/rcomeau/eba Large C source file for VHDL
behavior of ripple-carry adder

host.c /usr2/eng/rcomeau/cla To load each node with node.c
/usr2/eng/rcomeau/csa
/usr2/eng/rcomeau/eba

node.c /usr2/eng/rcomeau/cla To run vhdl_main (in cla.c)
/usr2/eng/rcomeau/csa To run vhdl_main (in csa.c)
/usr2/eng/rcomeau/eba To run vhdl main (in eba.c)

lpl.arcs /usr2/eng/rcomeau/cla Gives node dependencies for 1 node run
/usr2/eng/rcomeau/csa
/usr2/eng/rcomeau/eba

Ip2.arcs /usr2/eng/rcomeau/cla Gives node dependencies for 2 node run
/usr2/eng/rcomeau/csa
/usr2/eng/rcomeau/eba

Ip4.arcs /usr2/eng/rcomeau/cla Gives node dependencies for 4 node run
/usr2/eng/rcomeau/csa "
/usr2/eng/rcomeau/eba

Ip8.arcs /usr2/eng/rcomeau/cla Gives node dependencies for 8 node run
/usr2/eng/rcomeau/csa "
/usr2/eng/rcomeau/eba

D-I



File Location Purpose

queuel.dat /usr2/eng/rcomeau/cla Gives behavioral instance (gate)
mapping for 1 node

/usr2/eng/rcomeau/csa I

/usr2/eng/rcomeau/eba i

queue2.dat /usr2/eng/rcomeau/cla Gives behavioral instance (gate)
mapping for 2 nodes

/usr2/eng/rcomeau/csa
/usr2/eng/rcomeau/eba

queue4.dat /usr2/eng/rcomeau/cla Gives behavioral instance (gate)
mapping for 4 nodes

/usr2/eng/rcomeau/csa I

/usr2/eng/rcomeau/eba

queue8.dat /usr2/eng/rcomeau/cla Gives behavioral instance (gate)
mapping for 8 nodes

/usr2/eng/rcomeau/csa
/usr2/eng/rcomeau/eba

makefile /usr2/eng/rcomeau/cla Makefile for c .:ry-lookahead adder
/usr2/eng/rcomeau/csa Makefile for carry-save adder
/usr2/eng/rcomeau/eba Makefile for ripple-carry adder

pvsim.c /usr2/eng/rcomeau/cla Parallel VHDL SIMulator program.
Switches for BUSY, OUTPUT, and
MAPPING are here

/usr2/eng/rcomeau/csa 1

/usr2/eng/r'comeau/eba I

runitl /usr2/eng/rcomeau/cla Gets cube of size 1 and runs host
/usr2/eng/rcomeau/csa I
/usr2/eng/rcomeau/eba I

runit2 /usr2/eng/rcomeau/cla Gets cube of size 2 and runs host
/usr2/eng/rcomeau/csa 1

/usr2/eng/rcomeau/eba I

runit4 /usr2/eng/rcomeau/cla Gets cube of size 4 and runs host
/usr2/eng/rccomeau/csa
/usr2/eng/rcomeau/eba

runit:8 /usr2/eng/rcomeau/cla Gets cube of size 8 and runs host
/usr2/eng/rcomeau/csa
/usr2/eng/rcomeau/eba
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Appendix E. Release

This appendix contains a copy of an e-mail message from Doug Dunlop of Intermetrics

Inc. whose help during this thesis is sincerely appreciated.

E.1 Authorization

From dunlop@inmet.camb.inmet.com Mon Nov 4 09:26:37 1991
To: rcomeau@galaxy
Subject: Re: C source switch for VHDL

> I am finalizing my thesis and was writing up how I parallelized VHDL. Part
> of that process is capturing the C source code from the model generate stage
> using the "-debug=cknd" switch. I need to know if that switch can be made

> available to NON-government agencies (i.e. is it proprietary?). If you do
> not want that published, please let me know via e-mail or letter. Thank you.

Including this information should be fine. FYI the way of dumping the C
code has changed in recent versions so this information is not completely
current. Good luck.

-- Doug
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